This article is more than 1 year old

Intel to extend chip-tech dominance

Bad news for AMD, IBM

According to an article in today's EE Times, Intel will "extend its lead over AMD, IBM and other microprocessor vendors" at next week's übergeekfest, the 2008 International Electron Devices Meeting (IEDM) in San Francisco.

Specifically, Intel will present papers that detail the company's latest advances in high-k/metal-gate technology, a transistor-manufacturing advantage that has competitors AMD and IBM struggling to play catch-up.

Although the phrase "high-k/metal-gate technology" may sound mind-numbingly esoteric, it's simple in concept - and the fact that Intel's got it and AMD and IBM don't is a powerful plus for the Santa Clara, California chipmeister.

Here's how it works: Simply put, a transistor in any chip is just a switch. Take a light switch, change the names of its parts into chip-speak, and the function of a transistor's gate becomes clear. When you flip a light switch's lever (gate), electricity flows from one wire (source) through the switch's circuitry (channel) to a second wire (drain). To make the switch work, however, there must also be insulation between the lever/gate and the circuitry/channel; in a transistor that insulation is called the gate dielectric.

Still with us? Good, because here's where the aforementioned high-k/metal gate technology comes into play - and why it gives Intel an advantage over other chippies.

As chipmakers have shrunk the sizes of their chips - essentially measured by the distances between transistors - the gate-dielectric insulation layer has shrunk as well. Problem: the thinner a gate dielectric, the more power it leaks, and the more power it leaks, the less efficient the transistor is and the hotter it gets. Both bad.

When chips first appeared back in the 1960s, gates were made of polysilicon, and gate dielectrics of silicon dioxide. At the current process-technology standard of 45nm, those two substances are stressed to their limits - they leak more than a Congressional staffer.

Enter - finally - high-k/metal-gate technology. Back in 2007, Intel replaced the silicon dioxide in the gate dielectric with a metal - hafnium - and the polysilicon in the gate with a proprietary metallic melange. The two substances work togethr to create a gate that has a "high-k," meaning superior insulation performance.

How superior? Intel claims that their high-k/metal-gate technology cuts leakage by about a factor of five. All good stuff.

IBM and AMD haven't kept up. Although AMD's technology partner IBM announced in 2007 that they were thiiis close to achieving high-k/metal-gate success, they haven't yet pulled it off. For their part, AMD's presentations for its 45nm family refer to high-k/metal-gate technology as a "future 45nm option."

While its competitors have been been struggling to get their gate acts in order, Intel has been busy perfecting a second-generation high-k/metal-gate technology in preparation for moving it down to its next-smaller process, 32nm, scheduled for broad release next year.

As if to rub its rivals' noses in the muck of their failure, Intel plans to use the IEDM 's bully pulpit to provide details about that second-generation technology, plus present a paper on their new system-on-a-chip (SoC) designs based on high-k/metal-gate low-power refinements. According to the EE Times article, Intel has "at least four SoCs in the works for systems outside its traditional PC markets. Tolapai is aimed at storage networks, Silverthorne at handhelds, Larabee at high-end visualization systems and Canmore at wired consumer devices." None are yet available for purchase, but they're all under test in Intel labs.

Finally, Intel is also expected to demonstrate its latest bit of wizardry: a high-speed, low-power, quantum-well, field-effect transistor - and as soon as The Reg figures out exactly what the hell that is, we'll let you know all about it. ®

More about

TIP US OFF

Send us news


Other stories you might like