Original URL: http://www.theregister.co.uk/2009/04/22/amd_istanbul_forward/

AMD pulls forward six-shooter Opteron cannon

Guns for Intel on server turf

By Timothy Prickett Morgan

Posted in Servers, 22nd April 2009 22:05 GMT

AMD is picking up the pace for its six-core, Istanbul family of Opteron processors, saying it will ship the chips to paying customers in May with server OEM partners shipping in June.

That brings the Istanbul chips ahead by several months and gives AMD a chance to leapfrog Intel in the two-socket server space, where Intel has just launched its quad-core Nehalem EP Xeon 5500s. It will also provide parity or better with Intel's six-core Dunnington Xeon 7400s for four-socket servers.

AMD has been trying to prove that it has gotten its Opteron mojo back after flubbing the launch of the Barcelona quad-core Opterons in 2007, a delay that cost AMD lots of revenue just as Intel was swinging its Xeon fists at full force in the market.

The follow-on Shanghai quad-core Opterons made their debut last November, somewhere around two months early and without any bugs. At the end of January this year, AMD kicked out some faster Opteron parts, right on schedule and including a bunch of low-power Highly Efficient, or HE, Opteron parts rated at 55 watts instead of the standard 75 watts.

And just today, AMD put a dozen new Shanghai's in the field, including new 105-watt Special Edition parts which hit 3.1GHz clock speeds as well as a bunch of other faster standard and HE parts and two new Extremely Efficient (EE) ultra low voltage parts that are rated at 40 watts with 2.1GHz and 2.3GHz clock speeds.

Today is a big day for AMD, with this being the sixth birthday of the Opteron processor and also Earth Day, which plays a bit into the whole energy efficiency theme that AMD has been using for marketing leverage against Intel since 2003. Between 2003 and 2008, AMD has moved from single to quad-core chips and delivered roughly ten times the integer and floating point performance in the same thermal envelope at the system level, according to AMD chief marketing officer Nigel Dessau.

"We're very proud of Opteron, and it is good enough to copy," Dessau said, taking a jab at Intel's Nehalem, which bears some strong resemblances to the Opteron family architecture in areas such as on-chip memory controllers, point-to-point interconnect, 64-bit memory addressing, power saving features and integrated virtualization. "But as someone once said to me, 'It's OK to clone the past, but the future has to be created.'"

To that end, AMD and its foundry spinoff, GlobalFoundries, have been working to move the six-core Istanbul chips ahead as part of a broader plan to get a new set of server platforms to market that AMD believes will better address the needs of the market. The Istanbul processors, which are made using a 45 nanometer SOI process like the Shanghai chips are, is expected to deliver about 30 per cent more performance within the same power envelope, and will hit the streets in May for both two-socket and four-socket and larger machines.

And because of the confidence that AMD has after it rejiggered its design and testing processes in the wake of the Barcelona bug, the company took Istanbul from tape out to production on one take, which Pat Patla, general manager of the server and workstation chip business at AMD, said was the first time the company had done that. This could be risky. We'll know about July or so.

These six-core Istanbul chips will support HyperTransport 3 interconnects, which have more bandwidth, and apparently some of the Shanghai models announced today will also support HT3 links. I was unable to find out which ones at press time. AMD is not talking about clock speeds for the Istanbul chips, but did say that integer performance for the chips would be about 16 times greater than for the original Opterons and floating point performance would be just under 14 times that of those ancient Opterons. The Istanbul chips will have three HT3 links with an acceleration technology called HT Assist and will go into the same sockets used by Barcelona and Shanghai Opterons in two-socket and four-socket variants.

Moving ahead Istanbul means that AMD can also move ahead its high-end Magny-Cours twelve-shooter, which is two Istanbuls put in the same package, side-by-side, with four HT3 links coming out of the chip package. Patla says that Magny-Cours is being sampled to OEM partners right now, and they will get seed units for testing and validation in the second half of the year in preparation for a launch in the first quarter of 2010. The Magny-Cours chips will include a new suite of virtualization and power management technologies that are being called AMD-V 2.0 and AMD-P 2.0, respectively.

Cores times three

The chips will sport three times as many cores as today's Shanghais, as well as twice the number of memory channels, 3.3 times the memory speed, 1.9 times the HyperTransport bandwidth, and 2.2 times as much cache memory. The twelve-shooter is expected to offer more than twice the performance of the Shanghai chips that are shipping today. (When you do the math, the Magny-Cours chips will have more than 25 times the oomph of the original Opterons.)

And because of the tweaks in the Magny-Cours electronics, Patla says AMD will be able to cram a whole lot more virtual machines on a processor - something server buyers want to do a lot these days. Magny-Cours will include AMD-Vi, which virtualizes I/O, among other new features.

AMD is not talking clock speeds on either the Istanbul or Magny-Cours chips, but it is hard to imagine the speeds deviating much from the 2GHz to 3GHz range of the Barcelona/Shanghai quad-cores.

Another interesting bit about AMD's announcement today was that it is changing the way it makes server platforms. AMD will deliver two different server platforms in 2010, which will target different parts of the server market and smear some of the distinctions between single-, dual-, and quad-socket servers that are separate items today. These changes will create two different Opteron processor families instead of the current three: 1000, 2000, and 8000 series.

Starting in 2010, AMD will offer Opteron 6000 Series Magny-Cours processors, which will be aimed at the biggest and heaviest workloads and which are designed for two-socket and four-socket servers. These chips will use AMD's G34 chipset and will have four channels of DDR3 memory and up to 12 DIMMs per socket. The Opteron 6000s will come with nine different SKUs in standard, HE, and SE variants.

The target thermals for these are 80 watts for standard Magny-Cours parts; Patla didn't say where HE and SE parts would be. Magny-Cours is expected to come in eight and twelve core versions, by the way, and will use a 45 nanometer SOI process. These chips and their related servers are aimed at server consolidation/virtualization, database, and HPC workloads. The server platform using the G34 chipset goes by the code-name Maranello.

Also in 2010, the Opteron 4000 Series of Magny-Cours chips, which will make use of the C32 chipset and which will be aimed at single-socket or two-socket servers. The C32 chipset will support up to four DDR3 DIMMs per socket and will have two memory channels. The Opteron 4000s will come in nine SKUs as well, but this time there are standard, HE, and EE parts and no SE parts.

The servers based on the Opteron 4000 chips will be aimed at HPC, cloud computing, and infrastructure workloads such as print, file, email, and web serving. The Opteron 4000 series chips, code-named Lisbon, will come in four and six-core variants and will feature higher clock speeds that are possible because the lower core counts allow for more clocks in the same thermal envelope. The Opteron 4000 platform goes by the name "San Marino."

In 2011, AMD will move to a 32 nanometer process and rev the Opteron 6000 series with 12-core and 16-core variants code-named Interlagos, and at the same time, the Opteron 4000s will get six-core and eight-core kickers code-named Valencia. These chips will be based on a new Opteron core named Bulldozer, and they will plug into the existing Maranello and San Marino platforms.

The 16-core Interlagos chip - which is probably two eight-core chips sharing a package, but AMD did not say - will have about 47 times the performance of the original Opterons on floating point work and about 37 times on integer work. That's about a 40 per cent boost in integer performance and 80 per cent on number-crunching compared to Magny-Cours chips with a dozen cores.

And looking out beyond that, AMD is working on a future set of chips that will plug into a next generation of AMD platforms in 2012 with a rev in 2013. Patla and Dessau did not say anything more about these processors and their related platforms, except that AMD did not believe that simultaneous multithreading - Intel's implementation is called HyperThreading, and Nehalem and Dunnington chips have it - was necessary.

"We think we're pretty well covered in the 48 to 64 thread area," Patla said, referring to what happens when you plop four Magny-Cores or Interlagos chips into a four-socket box.

One more thing: AMD says that neither Broadcom nor nVidia will make chipsets that compete with the G34 and C32 chipsets, or any future processors that come from AMD, but they are expected to continue to sell and support their existing Opteron chipsets. ®