This article is more than 1 year old

Geeks fight the smelter with embedded processor-based box

The Climate Computer

In 2002, a couple of hardware geeks thrust a crazy, fresh idea on the computing community. Chris Hipp, a co-founder of blade maker RLX, and Wu-chun Feng, then a researcher at Los Alamos National Laboratory, concocted a very powerful cluster with servers based on laptop chips from Transmeta. The cluster failed to outperform similar Xeon-based systems, but it could run in a desert warehouse with no special cooling and with less failures than other Los Alamos boxes protected by very expensive air conditioning systems.

A lot of people scoffed at the Green Destiny system at the time. "Laptop chips, you say? Please. I need a man's machine and a rocket inside of every box."

Flash forward to 2008, and Green Computing is all the rage. Vendors do all they can to show how concerned they are about "greening" data centers and selling power-friendly kit. The scoffing has stopped with performance per watt, energy costs and political correctness rising in importance.

Sadly, relatively little work was done to further the concepts ushered in with the Green Destiny project. RLX shifted away from Transmeta toward Intel and then exited the hardware business altogether. Blade servers went mainstream, and are now filled with beefy Xeons, Opterons and RISC chips.

So, we're glad to hear that Horst Simon, a prominent computer scientist at Berkeley Lab, has renewed work around slotting low power chips into supercomputer class machines.

During a presentation this week at Lawrence Berkeley National Lab, Simon emphasized the rather profound challenges facing data center operators in the coming years.

We're used to thinking of factories as some of the largest energy consumers. You can picture the smokestacks puffing black clouds into the air and fueling the work taking place at car assembly lines or aluminum smelting plants. In the near future, data centers will consume just as much energy simply to process, move and store bits of information.

US companies and organizations spend about $16bn a year powering computers, consuming close to 200TWh (terawatt hours) of energy.

You've all likely encountered similar figures and heard about companies now spending more on managing and cooling data centers than on buying the actual gear to fill them. Even with improvements in the performance per watt of general purpose chips, computer buyers face growing energy consumption challenges.

Similarly, stories about Google, Microsoft, Yahoo! and others building data centers near cheap power have become commonplace. These giants can and must go to great lengths in an effort to afford the number of systems they need.

A utility computing-style model could help offset some of the problems faced by the average computer buyer over the long-term. But we're likely talking about a very lengthy transition where companies move away from managing their own data centers.

In the nearer-term, companies must deal with the power and space issues and could use some help.

Simon and other researchers at Berkeley have partnered with low power chip designer Tensilica and Rambus to create a new class of computer that could show dramatic performance per watt gains and aid end computer buyers.

Next page: Bootnote

More about

More about

More about

TIP US OFF

Send us news


Other stories you might like