Intel, Cray bag $200m to build 180PFLOPS super for US nuke boffins

Monster Aurora machine to slurp 13MW crunching numbers on fuel and more

Intel and Cray have landed a $200m deal to build a 180-petaFLOPS supercomputer dubbed Aurora for the US Department of Energy.

Intel will provide the chips – expected to include next-gen 10nm Knights Hill processor cores – and Cray will integrate it all together. If you look at the numbers, that's a rather small amount of money for the level of oomph being delivered.

The machine, which can be redlined to perform 180 quadrillion floating-point math calculations a second, will be installed at the Argonne National Laboratory just outside Chicago. It will comfortably sit in the top slots of the world's most-powerful known 500 computers when it's eventually switched on.

"It is no accident the US dominates the top 500 supercomputers in the world; it's due to sustained investment and sustained federal commitments," Dr Lynn Orr, the under-secretary for science and energy at the US Department of Energy, told The Register by phone today.

"Other countries are doing their absolute level best to outperform us," he added, stressing it was vital America stayed ahead of its rivals.

"Have you ever been on an airplane, or checked the weather forecast? Then you've benefited from supercomputing, and we will be able to do those things even better in the future."

The Aurora supercomputer will go live in 2018 to tackle stuff from nuclear security problems to airflow simulations, and will replace the 10-petaFLOPS Mira installation as the lab's most powerful computer. That's right, Aurora will be 18 times faster than Mira at its peak.

When running full throttle, Aurora will consume 13MW of power, more than three times that of Mira, but still 4MW less than today's top known supercomputer: China's 55-petaFLOPS Tianhe-2.

Dr Orr said Aurora will crunch numbers analyzing, among many things, new fuel cells and batteries, nuclear energy, and simulating airflow around freight trucks racing along highways: US DoE computers have been used to reduce drag and increase the efficiency of some 18-wheeler freighters by 60 per cent, saving 5,000 gallons of gas per big rig per year, he claimed.

Intel told us the computer will be used to study "more powerful, efficient and durable batteries and solar panels; improved biofuels and more effective disease control; improving transportation systems and enabling production of more highly efficient and quieter engines; and wind turbine design and placement for improved efficiency and reduced noise."

Under the hood

Aurora will use Cray's new Shasta architecture, and consist of at least 50,000 nodes packing 7PB of memory, 150PB of filesystem storage, and Knights Hill processors, we understand. A second machine, Theta, a Cray XC super that can run up to eight petaFLOPS, also be installed next year for Argonne's scientists to use while waiting for its bigger sister to be built.

This system is a beast. And the real performance story has far less to do with the computational power of the cores than it does how data gets moved around ...
Read more on platform logo

"Intel has said that Knights Hill will use a 10-nanometer process, which is the one it will be ramping later this year for its processors for various client devices," writes Nicole Hemsoth, co-editor of our HPC sister site The Platform, which broke the news on Aurora this morning.

"The shift from the 14-nanometer processes used with Knights Landing to the 10-nanometer processes used with Knights Hill probably won’t yield a big change in core counts or clock speeds – maybe something on the order of a 30 percent to 50 percent boost in cores (call it somewhere between 90 and 100 cores) and about the same clock speed (somewhere around 1.2GHz).

"Knights Hill might deliver somewhere between 4TFLOPS and 4.5TFLOPS of peak floating point performance. It is safe to say that local memory on the package and addressable through DDR controllers – as well as bandwidth on these memories – will scale proportionately."

The DoE already has three of the top five publicly known supercomputers in the world (Titan, Sequoia and Mira) and the department is looking to further its lead in the coming years with three new installations to be known as the CORAL initiative.

When it goes live, Aurora will outstrip the compute power of the 33-petaFLOPS, 3.1-million-core Xeon-powered Tianhe-2 in China.

It would not, however, be the most powerful in world, or even the hottest in the DoE's arsenal. Fellow CORAL project Summit will claim those honors with a peak performance of 300 petaFLOPS. A third CORAL system, the 100-petaFLOPS Sierra Power9 cluster, will be installed at Lawrence Livermore National Lab. Both are due to go online in 2017. ®

Sponsored: The Joy and Pain of Buying IT - Have Your Say


Biting the hand that feeds IT © 1998–2017