Feeds

Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM

Is this the real life? Is this just fantasy?

Secure remote control for conventional and virtual desktops

How can we tell from the inside of our Universe if it’s actually real or just a hologram? Boffins at Fermilab have set out to answer this thorny question with a new experiment in the National Accelerator Lab called the Holometer.

A Fermilab scientist works on the laser beams at the heart of the Holometer experiment

Lasers are SO COOL

If folks inside our telly could think about it, they wouldn’t be able to tell that they were nothing more than a 2D projection, because their world looks 3D to them. In the same way, there’s no simple way to tell if the world we see around us is an illusion, a collective hallucination or the real 3D deal.

Scientists reckon it’s possible that, just like the pixels that make up the 3D image on your TV, all the information about the Universe could actually be encoded in tiny packets in just two dimensions. These natural pixels would be ten trillion trillion times smaller than an atom – a unit known as the Planck length. Things get heavily quantum from this assumption on…

“We want to find out whether space-time is a quantum system just like matter is,” said Craig Hogan, director of Fermilab’s Centre for Particle Astrophysics and the developer of the holographic noise theory. “If we see something, it will completely change ideas about space we’ve used for thousands of years.”

In quantum theory, you can’t know both the exact location and the exact speed of subatomic particles at one time. If space comes in 2D pieces that have limited information about precise locations, then it would be subject to same theory of uncertainty.

To figure out if they’re right, boffins need to look for the jiggle in the hologram. Matter continues to move as quantum waves even when it’s cooled to absolute zero, so digitised space bits should also have built-in vibrations even in their lowest energy state.

The Fermilab’s Holometer will attempt to measure the quantum jitter of space itself using a pair of interferometers placed close together. Each instrument will send a one-kilowatt laser beam at a beam splitter and down two perpendicular 40m arms. The light will then be reflected back to the splitter when the two beams recombine, creating fluctuations in the brightness if these vibrations exist.

The tricky part will be separating out any “holographic noise” from extraneous background sources, like radio waves from nearby electronics. The Holometer, which is the most sensitive device ever created to measure quantum jitter, is testing on such a high frequency that the motions of normal matter shouldn’t be a problem.

“If we find a noise we can’t get rid of, we might be detecting something fundamental about nature – a noise that is intrinsic to space-time,” said Fermilab physicist Aaron Chou, lead scientist and project manager for the Holometer. “It’s an exciting moment for physics. A positive result will open a whole new avenue of questioning about how space works.” ®

Intelligent flash storage arrays

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Rosetta science team thinks Philae might come to life in the spring
And disclose the biggest surprise of Comet 67P
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

10 ways wire data helps conquer IT complexity
IT teams can automatically detect problems across the IT environment, spot data theft, select unique pieces of transaction payloads to send to a data source, and more.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
The total economic impact of Druva inSync
Examining the ROI enterprises may realize by implementing inSync, as they look to improve backup and recovery of endpoint data in a cost-effective manner.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.