Feeds

AMD's first 64-bit ARM cores star in ... Heatless in Seattle*

* Relatively speaking – this SoC tries to be low-power, data-center-grade

Top 5 reasons to deploy VMware with Tegile

Hot Chips 26 AMD today sheds more light on its "Seattle" 64-bit ARM architecture processor at the Hot Chips conference in Cupertino, California.

Take one glance at this new Opteron A1100-series system-on-chip, and you'll realize it's aimed squarely at servers rather than the traditional ARM scene of handheld gadgets and embedded computing – although that was to be expected: AMD CEO Rory Read said as much in April.

As expected, Seattle has eight Cortex-A57 cores – ARM's top-end design running 64-bit ARMv8-A code – and will be fabricated using a 28nm process. The cores will run at 2GHz or more.

The octo-core Seattle SoC will have 4MB of level-two cache and 8MB of level-three cache; two 64-bit DDR3/4 channels with ECC and two DIMMs per channel running up to 1866MHz, supporting up to 128GB of RAM per chip; and controllers for eight 6Gbps SATA3 ports, two 10Gbit Ethernet ports and eight lanes of generation-three PCIe.

Seattle also uses ARM's System Memory Management Unit (SMMU) to link the aforementioned interfaces to the A57 cores. The S in SMMU should really stand for Super or Steroids, because the SMMU does more than the usual address translation and access protection: it allows hypervisors to define per-guest OS translation tables, keeping guests in separate pools of physical RAM. The SMMU design has been kicking around for a few years now [PDF] but its use in virtualization is especially relevant to this server-grade SoC.

And if you like your SoCs, AMD has put a SoC within a SoC: a system control processor (SCP) packing a little Cortex-A5 core with 64KB of ROM; 512KB of SRAM; timers and a watchdog; the usual SPI, UART and I2C interfaces; TrustZone execution space; and a 1Gbps Ethernet remote management port (RGMII).

The idea of the SCP is to boot up, configure and monitor the main processor while maintaining its own (in theory) secure space to execute code. If the system running on the main processor falls over, or otherwise needs to be restarted from scratch, the SCP is needed to be on hand (and non-compromised) to power cycle the machine or similar. The TrustZone component of the SCP is supposed to guarantee this by ensuring the system boots from a known good, secure state each time.

Seattle is not unique in having one of these sidekick CPUs to keep it on the straight and narrow – far from it – but it's worth noting its presence.

The computer within the computer ... Your Seattle chip actually includes two systems, one sorta hidden

The SCP follows UEFI 2.4, in that it starts first when the machine is powered up, initializes the main SoC, starts its own real-time operating system, and then releases the A57 boot core from reset to start the UEFI ARM firmware.

The OS running under your hypervisor running under your OS ... How Seattle is booted by the SCP

This sidekick processor also includes a coprocessor for accelerating cryptographic algorithms, which is attached to the SCP or via an interconnect to the SMMU. This coprocessor includes a random number generator, and can perform zlib compression and decompression in hardware along with AES, Elliptic Curve Cryptography, RSA, and SHA algorithms.

Knock your server SoCs off ... the system-on-chip's features (click to enlarge)

Beginner's guide to SSL certificates

More from The Register

next story
Ellison: Sparc M7 is Oracle's most important silicon EVER
'Acceleration engines' key to performance, security, Larry says
Oracle SHELLSHOCKER - data titan lists unpatchables
Database kingpin lists 32 products that can't be patched (yet) as GNU fixes second vuln
Lenovo to finish $2.1bn IBM x86 server gobble in October
A lighter snack than expected – but what's a few $100m between friends, eh?
Ello? ello? ello?: Facebook challenger in DDoS KNOCKOUT
Gets back up again after half an hour though
Hey, what's a STORAGE company doing working on Internet-of-Cars?
Boo - it's not a terabyte car, it's just predictive maintenance and that
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.