Feeds

Kiwi satellite earth station recycled – as radio telescope

'First light' from four-year conversion project

Intelligent flash storage arrays

Auckland University of Technology (AUT) is celebrating “first light” from its new radio telescope – a 30m, 30-year-old former satellite Earth station that was once New Zealand's primary link to the outside world.

The AUT telescope is now getting ready for a mission studying star formation, the centre of the Milky Way, galactic gases, and tectonic plate motion on Earth.

As a communications system the Warkworth 2 dish's mission, when it was built in 1984, was to carry analogue telephony and TV signals. After decommissioning by Telecom New Zealand in 2010, the AUT began the long process of turning the system into a radio-telescope.

That process involved considerable engineering effort. As a geosynchronous satellite antenna, Warkworth 2 wasn't manoeuvrable enough for astronomy, so its azimuth limits had to be changed from ±170° to ±270°, which in turn meant changes to the motors and cables that move the 270-ton (imperial) instrument.

It also needed a new control system, and because of its seaside location, rusty components had to be changed.

The 30m dish at Warkworth, New Zealand

The Auckland University of Technology's

converted 30m satcom dish

The differences between the control system of a satellite communications antenna and a radio-telescope are also significant. Instead of tracking the small movements of a satellite, the dish has to track objects across the sky, and has to be able to shift from one object to another quickly. That's the task of an Integrated Antenna Controller (IAC), built from standard commercial components, cycling through its position control algorithms every four milliseconds.

The dish's surface also had to be laser scanned to compensate for what the university calls “a noticeable gravitational deformation of the antenna along the vertical direction” when the antenna was at an elevation of 6°. Further surveys of the surface are being undertaken to measure deformation in other configurations.

The dish's original satellite transceiver has been replaced by a C-band receiver from Jodrell Bank, and it's now fitted with a digital baseband converter covering five frequency bands up to 2100 MHz. The group's Arxiv paper notes that with the right receivers fitted the instrument would be able to carry out science at frequencies up to 22 GHz “and possibly higher”.

The telescope is also networked to a nearby 12m receiver to increase its resolution.

The AUT has detailed the restoration and repurposing project here. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that PONG? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.