Feeds

Resistance is not futile: Here's a cookie sheet of luke-warm RRAM that proves it

Look, ma - no edge structure!

Beginner's guide to SSL certificates

Boffins devising Resistive RAM (RRAM) have found that using porous silicon oxide makes the devices easier to manufacture, longer lasting and less power hungry.

The researchers, at Rice University, Texas, stumbled upon silicon oxide RRAM five years ago. The stuff works as computer storage by having differing resistance levels signify binary digits. Previously, graphite was thought to be the best RRAM material.

RRAM bridges the gap between NAND and DRAM by offering faster speeds than NAND while being non-volatile, as well as having DRAM word-level addressability instead of NAND's block addressability.

Rice's RRAM involves a nanoscale channel or hole in a sheet of dielectric (that is, non-electrically conductive) silicon oxide, which is sandwiched between layers of conducting material. Applying a high-enough voltage to the silicon oxide creates a conductive path between the two layers sandwiching it. Turning off the current breaks the path – meaning the technique can be used to store binary 1s and 0s.

The latest Rice announcement talks of “the insertion of a dielectric material — one that won’t normally conduct electricity — between two wires” and schematic diagrams show what they mean:

Rice_RRAM_Schematic

Scanning electron microscope image and schematic showing the design and composition of RRAM memory devices based on porous silicon oxide. Credit: Tour Group/Rice University.

Rice_RRAM_wire

Schematic picture of the rewriteable crystalline filament pathway in Rice University's porous silicon oxide RRAM memory devices. Credit: Tour Group/Rice University.

By using porous silicon oxide the boffins say that their RRAM memory can be manufactured at room temperature and doesn’t need a device edge structure. Explaining what this means, Rice boffin bunch boss James Tour says: “That means we can take a sheet of porous silicon oxide and just drop down electrodes without having to fabricate edges."

He continues: "When we made our initial announcement about silicon oxide in 2010, one of the first questions I got from industry was whether we could do this without fabricating edges. At the time we could not, but the change to porous silicon oxide finally allows us to do that.”

The much-titled Tour is Rice’s T.T. and W.F. Chao Chair in Chemistry, professor of mechanical engineering and nanoengineering, and of computer science.

Porous silicon oxide RRAM only needs a 1.6 volt charge to form the conduction pathway; that's a 13-fold improvement over the team's previous best, and, in their words, “a number that stacks up against competing RRAM technologies.”

Tour said: “Our technology is the only one that satisfies every market requirement, both from a production and a performance standpoint, for nonvolatile memory. It can be manufactured at room temperature, has an extremely low forming voltage, high on-off ratio, low power consumption, nine-bit capacity per cell, exceptional switching speeds and excellent cycling endurance.”

Suppliers such as Crossbar are working to develop RRAM products, as is HP if the memristor is classed as a resistive RAM product.

Tour said Rice had already been approached by companies wanting to license the technology.

The full study is titled Nanoporous Silicon Oxide Memory by Gunuk Wang, Yang Yang, Jae-Hwang Lee, Vera Abramova, Huilong Fei, Gedeng Ruan, Edwin L. Thomas, and James M. Tour. Nano Lett., Article ASAP DOI: 10.1021/nl501803s, dated July 3, 2014, and can be read online here. ®

Internet Security Threat Report 2014

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Driving business with continuous operational intelligence
Introducing an innovative approach offered by ExtraHop for producing continuous operational intelligence.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Mitigating web security risk with SSL certificates
Web-based systems are essential tools for running business processes and delivering services to customers.