Feeds

New photonic router works by flipping reflective atom's lid

Look ma! No electronics!

Intelligent flash storage arrays

Quantum boffins from Israel's Weizmann Institute have demonstrated a two-input/two-output router that works entirely with single photons – no electronics required.

It's not the first time a photonic router has been demonstrated, but what's different about the Israeli work is that everything is photonic: the device has two optical inputs, two optical outputs, and can route single photons from either input to either output based solely on a control provided by another single photon.

There are two important differences between this and the current “state of the art”.

On the one hand, there's a big body of work in designing systems that use electrical controls to route photons. The Register has discussed such kit in the past, and noted that it demands a lot of work integrating electro and optical components on the same chip.

On the other, while all-optical switches exist (Australia's CUDOS has been recognised for such work), they operate at the beam level rather than on individual photons.

The latest work, published in Science (abstract here, pre-press here), sets about to resolve a conundrum in quantum information processing: because photons don't normally interact with each other, they're ideal for communications; but because photons don't normally interact, it's hard to create all-photonic gates (by way of counter-example: electrons interact strongly, so it's easy to use an electrical signal to control a gate, but their interaction makes electrons interfere with each others' communications).

What the Weizmann Institute of Science group settled on as their solution was to use single photons to change the state of a single Rubidium atom at the centre of a matrix of four optical fibres (two in, two out). The atom is flipped by a photon, between acting as a mirror or being (effectively) transparent.

Photonic router schematic

The atom in the middle is the key. Image: Dayan et al

For example, if the “control atom” is presenting its reflective state to input 1, a photon arriving at that input will appear at output 1. In that state, the atom will transmit a photon from input 2 to output 1. When the atom's state is flipped, both inputs will appear at output 2, either by transmission (input 1) or reflection (input 2)*.

The researchers say that the state-flip can be accomplished with a single photon (although losses and nonlinearities mean that in practise, as many as three photons might be required).

The key technologies enabling this demonstration are laser cooling (which helps the trapping of the single Rubidium atom), and the high-quality chip-based optical resonators that couple directly to the optical fibres.

“The device we constructed demonstrates a simple and robust system, which should be applicable to any future architecture of such computers. In the current demonstration a single atom functions as a transistor – or a two-way switch – for photons, but in our future experiments, we hope to expand the kinds of devices that work solely on photons, for example new kinds of quantum memory or logic gates”, says Dr Barak Dayan, head of the Weizmann Institute’s Quantum Optics group. ®

*Bootnote – TL;dr version: What's going on at the quantum level is, of course, a little more complex than “reflect or transmit”. What happens is that the control atom absorbs an incoming photon: in the “reflective” state, it re-emits that photon back towards the input fibre, while in its “transmission” state, it emits a photon towards the output fibre.

“The atom radiates in both directions, and the destructive interference with the incoming [light] probe in the forward direction leads to reflection of the probe backwards”, the paper states. ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
You can crunch it all you like, but the answer is NOT always in the data
Hear that, 'data journalists'? Our analytics prof holds forth
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
America's super-secret X-37B plane returns to Earth after nearly TWO YEARS aloft
674 days in space for US Air Force's mystery orbital vehicle
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.