Feeds

New photonic router works by flipping reflective atom's lid

Look ma! No electronics!

Remote control for virtualized desktops

Quantum boffins from Israel's Weizmann Institute have demonstrated a two-input/two-output router that works entirely with single photons – no electronics required.

It's not the first time a photonic router has been demonstrated, but what's different about the Israeli work is that everything is photonic: the device has two optical inputs, two optical outputs, and can route single photons from either input to either output based solely on a control provided by another single photon.

There are two important differences between this and the current “state of the art”.

On the one hand, there's a big body of work in designing systems that use electrical controls to route photons. The Register has discussed such kit in the past, and noted that it demands a lot of work integrating electro and optical components on the same chip.

On the other, while all-optical switches exist (Australia's CUDOS has been recognised for such work), they operate at the beam level rather than on individual photons.

The latest work, published in Science (abstract here, pre-press here), sets about to resolve a conundrum in quantum information processing: because photons don't normally interact with each other, they're ideal for communications; but because photons don't normally interact, it's hard to create all-photonic gates (by way of counter-example: electrons interact strongly, so it's easy to use an electrical signal to control a gate, but their interaction makes electrons interfere with each others' communications).

What the Weizmann Institute of Science group settled on as their solution was to use single photons to change the state of a single Rubidium atom at the centre of a matrix of four optical fibres (two in, two out). The atom is flipped by a photon, between acting as a mirror or being (effectively) transparent.

Photonic router schematic

The atom in the middle is the key. Image: Dayan et al

For example, if the “control atom” is presenting its reflective state to input 1, a photon arriving at that input will appear at output 1. In that state, the atom will transmit a photon from input 2 to output 1. When the atom's state is flipped, both inputs will appear at output 2, either by transmission (input 1) or reflection (input 2)*.

The researchers say that the state-flip can be accomplished with a single photon (although losses and nonlinearities mean that in practise, as many as three photons might be required).

The key technologies enabling this demonstration are laser cooling (which helps the trapping of the single Rubidium atom), and the high-quality chip-based optical resonators that couple directly to the optical fibres.

“The device we constructed demonstrates a simple and robust system, which should be applicable to any future architecture of such computers. In the current demonstration a single atom functions as a transistor – or a two-way switch – for photons, but in our future experiments, we hope to expand the kinds of devices that work solely on photons, for example new kinds of quantum memory or logic gates”, says Dr Barak Dayan, head of the Weizmann Institute’s Quantum Optics group. ®

*Bootnote – TL;dr version: What's going on at the quantum level is, of course, a little more complex than “reflect or transmit”. What happens is that the control atom absorbs an incoming photon: in the “reflective” state, it re-emits that photon back towards the input fibre, while in its “transmission” state, it emits a photon towards the output fibre.

“The atom radiates in both directions, and the destructive interference with the incoming [light] probe in the forward direction leads to reflection of the probe backwards”, the paper states. ®

Security for virtualized datacentres

More from The Register

next story
MEN: For pity's sake SLEEP with LOTS of WOMEN - and avoid Prostate Cancer
And, um, don't sleep with other men. If that's what worries you
Voyager 1 now EIGHTEEN LIGHT HOURS from home
Almost 20 BEEELION kilometres from Sol
HUGE SHARK as big as a WWII SUBMARINE died out, allowing whales to exist
Who'd win a fight: Megalodon or a German battleship?
Jim Beam me up, Scotty! WHISKY from SPAAACE returns to Earth
They're insured for $1m, before you thirsty folks make plans
ROGUE SAIL BOAT blocks SPACE STATION PODULE blastoff
Er, we think our ISS launch beats your fishing expedition
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
BAE points electromagnetic projectile at US Army
Railguns for 'Future fighting vehicle'
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.
Business security measures using SSL
Examines the major types of threats to information security that businesses face today and the techniques for mitigating those threats.