NIST shows off one-way photon-passing metamaterial

A light take on a diode could be just the thing for photonic networks

The smart choice: opportunity from uncertainty

If photonics is ever to displace or supplement electronics in microprocessors, the operations we perform on electrons need to be replicated on photons. A group at NIST is the latest to demonstrate a photonic diode – a device that passes light in one direction only, similarly to how diodes pass electrons in one direction only.

The NIST work, which has been published in Nature Communications (abstract here), differs from previous one-way-light-devices because it works with visible light, not the microwave or infrared wavelengths blocked by other techniques.

“Until now, no one had achieved one-way transmission of visible light, because existing devices could not be fabricated at scales small enough to manipulate visible light's short wavelengths”, the researchers write.

The NIST researchers, Ting Xu and Henri Lezec created what they call “a multi-layered block of alternating silver and glass sheets and metal grates with very narrow spacings”. This, they say, creates a structure which is opaque to visible light from the outside, but allows light to “propagate inside the material within a narrow range of angles”.

In other words, in this hyperbolic metamaterial, with layers tens of nanometers thick (compared to visible light's 400 nm to 700 nm range of wavelengths), the behaviour of light depends on its direction. The "block" direction passes light at one-thirtieth the intensity of the "pass" direction.

NIST's one-way photonic metamaterial

NIST's metamaterial passes visible light in one direction (left beam).

The block has 20 alternating layers of silicon dioxide glass and silver. The outside surfaces then have chromium grates with sub-wavelength spacings. On one side, the grates bend red or green light into the “block”, while on the other side, the grate is designed to let light out of the structure.

“While the second set of grates let light escape the material, their spacing was slightly different from that of the first grates. As a result, the reverse-direction grates bent incoming light either too much or not enough to propagate inside the silver-glass layers,” the NIST statement explains.

As well as possible applications in photonic chips, the researchers say the metamaterial could be used in biosensing applications, detecting small amounts of light from a sample. ®

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Beancounters tell NASA it's too poor to fly planned mega-rocket
Space Launch System would need another $400m and a lot of time
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story


Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.