Feeds

Cambridge's tiny superconducting magnet breaks strength record

Three tonnes of force exerted by golfball-sized gadolinium, barium and copper cocktail

Build a business case: developing custom apps

Boffins at the University of Cambridge say they've packed the equivalent of three tonnes of magnetic force into a superconducting material roughly the size of a golf ball.

In what they call a “trapped field” experiment, the university says its researchers managed to cram a 17.6 Tesla magnetic field into the brittle “high temperature gadolinium barium copper oxide (GdBCO) superconductor” – along the way passing the previous decade-old 17.24 Tesla record.

This didn't happen at room temperature, though: the definition of a “high temperature” superconductor is one that doesn't need liquid nitrogen and can therefore operate at temperatures above -196°C. Even so, high-temperature superconducting magnet research is, the university says, important for maglev trains, flywheels for energy storage, and magnetic separators for pollution control.

The demonstration used cuprates – thin sheets of copper and oxygen separated (in this case) by gadolinium and barium atoms. Cuprates were the first high-temperature superconductors to be discovered, but they're brittle, so the Cambridge researchers had to find a way to confine the high-strength magnetic field, without having the stresses involved blow the cuprate to pieces.

Cambridge's superconducting magnet levitating

A permanent magnet is levitated over Cambridge's superconducting magnet. Image: Cambridge University

To achieve that, the researchers “shrink-wrapped” the GdBCO single-grain samples with a stainless steel ring. The other trick came from Cambridge's 20 years of research into fabricating the magnets so that “flux pinning centres” are distributed throughout the material, to retain the magnetic field against the way lines of flux might otherwise repel each other.

The university's professor David Cardwell says the aim of the work is to develop standard manufacturing processes to produce bulk superconductors.

The research was carried out in conjunction with Boeing and America's National High Field Magnet Laboratory, with funding from the aerospace company and the UK's Engineering and Physical Sciences Research Council. The research is published in Superconductor Science and Technology here. ®

Securing Web Applications Made Simple and Scalable

More from The Register

next story
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.