Feeds

Cambridge's tiny superconducting magnet breaks strength record

Three tonnes of force exerted by golfball-sized gadolinium, barium and copper cocktail

New hybrid storage solutions

Boffins at the University of Cambridge say they've packed the equivalent of three tonnes of magnetic force into a superconducting material roughly the size of a golf ball.

In what they call a “trapped field” experiment, the university says its researchers managed to cram a 17.6 Tesla magnetic field into the brittle “high temperature gadolinium barium copper oxide (GdBCO) superconductor” – along the way passing the previous decade-old 17.24 Tesla record.

This didn't happen at room temperature, though: the definition of a “high temperature” superconductor is one that doesn't need liquid nitrogen and can therefore operate at temperatures above -196°C. Even so, high-temperature superconducting magnet research is, the university says, important for maglev trains, flywheels for energy storage, and magnetic separators for pollution control.

The demonstration used cuprates – thin sheets of copper and oxygen separated (in this case) by gadolinium and barium atoms. Cuprates were the first high-temperature superconductors to be discovered, but they're brittle, so the Cambridge researchers had to find a way to confine the high-strength magnetic field, without having the stresses involved blow the cuprate to pieces.

Cambridge's superconducting magnet levitating

A permanent magnet is levitated over Cambridge's superconducting magnet. Image: Cambridge University

To achieve that, the researchers “shrink-wrapped” the GdBCO single-grain samples with a stainless steel ring. The other trick came from Cambridge's 20 years of research into fabricating the magnets so that “flux pinning centres” are distributed throughout the material, to retain the magnetic field against the way lines of flux might otherwise repel each other.

The university's professor David Cardwell says the aim of the work is to develop standard manufacturing processes to produce bulk superconductors.

The research was carried out in conjunction with Boeing and America's National High Field Magnet Laboratory, with funding from the aerospace company and the UK's Engineering and Physical Sciences Research Council. The research is published in Superconductor Science and Technology here. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
LOHAN invites ENTIRE REG READERSHIP to New Mexico shindig
Well, those of you who back our Kickstarter tin-rattling...
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.