Feeds

Cambridge's tiny superconducting magnet breaks strength record

Three tonnes of force exerted by golfball-sized gadolinium, barium and copper cocktail

Secure remote control for conventional and virtual desktops

Boffins at the University of Cambridge say they've packed the equivalent of three tonnes of magnetic force into a superconducting material roughly the size of a golf ball.

In what they call a “trapped field” experiment, the university says its researchers managed to cram a 17.6 Tesla magnetic field into the brittle “high temperature gadolinium barium copper oxide (GdBCO) superconductor” – along the way passing the previous decade-old 17.24 Tesla record.

This didn't happen at room temperature, though: the definition of a “high temperature” superconductor is one that doesn't need liquid nitrogen and can therefore operate at temperatures above -196°C. Even so, high-temperature superconducting magnet research is, the university says, important for maglev trains, flywheels for energy storage, and magnetic separators for pollution control.

The demonstration used cuprates – thin sheets of copper and oxygen separated (in this case) by gadolinium and barium atoms. Cuprates were the first high-temperature superconductors to be discovered, but they're brittle, so the Cambridge researchers had to find a way to confine the high-strength magnetic field, without having the stresses involved blow the cuprate to pieces.

Cambridge's superconducting magnet levitating

A permanent magnet is levitated over Cambridge's superconducting magnet. Image: Cambridge University

To achieve that, the researchers “shrink-wrapped” the GdBCO single-grain samples with a stainless steel ring. The other trick came from Cambridge's 20 years of research into fabricating the magnets so that “flux pinning centres” are distributed throughout the material, to retain the magnetic field against the way lines of flux might otherwise repel each other.

The university's professor David Cardwell says the aim of the work is to develop standard manufacturing processes to produce bulk superconductors.

The research was carried out in conjunction with Boeing and America's National High Field Magnet Laboratory, with funding from the aerospace company and the UK's Engineering and Physical Sciences Research Council. The research is published in Superconductor Science and Technology here. ®

Next gen security for virtualised datacentres

More from The Register

next story
Gigantic toothless 'DRAGONS' dominated Earth's early skies
Gummy pterosaurs outlived toothy competitors
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
TRIANGULAR orbits will help Rosetta to get up close with Comet 67P
Probe will be just 10km from Space Duck in October
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
'Leccy racer whacks petrols in Oz race
ELMOFO rakes in two wins in sanctioned race
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
Why your mum was WRONG about whiffy tattooed people
They're a future source of RENEWABLE ENERGY
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.