Feeds

'Sterile neutrinos' re-ignite 'we found dark-stuff' debate

Still too early to say 'DARK MATTER FOUND', but the X-rays are encouraging

Protecting against web application threats using SSL

Astro-physicists remain cautiously (around media) excited (among themselves) about an unexpected X-ray signal discovered in a survey of galactic clusters.

Having first put their findings in the public sphere in March, as reported by The Register at the time, the work has now passed peer review to hit the presses in the prestigious Astrophysical Journal - and re-ignite discussion about whether the rays represent at least a chunk of the missing stuff in the cosmos.

It's the frequency of the signal that's set boffins' imaginations – and their authorial glands – aflame, since spectroscopy even at high energies is sufficiently familiar that something new, which for example doesn't match up with known elements, demands attention. The emission line occurs at an energy of (3.55-3.57)+/-0.03 keV – let's say “between 3.55 and 3.57 kilo-electron-volts.

Perhaps cautious after the recent BICEP-CMB kerfuffle, which still hasn't been completely resolved, the news from ESA and NASA has been given a much more muted reception, a heavily caveated “this will be huge if it's right”.

And huge it would be: the missing matter in the universe remains one of astrophysics' biggest puzzles (along with where they should be looking for dark energy). The world is host to a number of instruments designed to track down dark matter, so far without identifying any signal better than a tantalising “this could be, or maybe not”.

What the analysis of data from NASA's Chandra X-ray observatory and the ESA's XMM-Newton instrument has turned up is an unexpected line in the X-ray spectrum, while looking at the Perseus galactic cluster.

Galactic clusters are among the largest-scale structures in the universe, consisting of galaxies interacting via gravity, along with the hot gas filling the space between them. They're also one of the reasons we believe in dark matter, since the observable mass of clusters (counting the galaxies and the gas) makes up only 20 per cent of the mass needed to provide the necessary gravity. The rest is presumed to be dark matter, made up of … “what, exactly?” is the big question.

Over to NASA's press release: there's a faint X-ray emission line discovered in the analysis of the Perseus cluster, which is matched by the same line in an analysis of another 73 galactic clusters.

The ESA's release explains that while a single image of Perseus showed the line, composite images were needed to detect it in the other galactic clusters.

The research has been posted at Arxiv, here. As NASA puts it: “The authors suggest this emission line could be a signature from the decay of a 'sterile neutrino.' Sterile neutrinos are a hypothetical type of neutrino that is predicted to interact with normal matter only via gravity. Some scientists have proposed that sterile neutrinos may at least partially explain dark matter”.

(NASA goes on to note that 55 other papers offering theories about the X-ray line already cite the original work. Science at work, people.)

Perseus galactic cluster

Perseus, about 250 million light years away,

has sparked a search for an X-ray emission.

Image: NASA

Co-author Maxim Markevitch from Goddard Space Flight Center says the mere possibility that a signature of sterile neutrinos is exciting, but cautions: “We have a lot of work to do before we can claim, with any confidence, that we’ve found sterile neutrinos”.

Over at the ESA, lead author Dr Esra Bulbul from the Harvard-Smithsonian Center for Astrophysics in Cambridge explains: “If this strange signal had been caused by a known element present in the gas, it should have left other signals in the X-ray light at other well-known wavelengths, but none of these were recorded.”

Dr Bulbul doesn't say that sterile neutrinos might make up all of the missing matter in the universe, only that they could be part of it.

NASA has extra data here. ®

Bootnote: Thanks to the reader that pointed out that superclusters are larger than galactic clusters. I have amended the offending sentence to say that galactic clusters are "among" the largest-scale structures in the universe. ®

Reducing the cost and complexity of web vulnerability management

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
Who wants to be there as history is made at the launch of our LOHAN space project?
Two places available in the chase plane above the desert
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.