Feeds

Sky-scraping boffins mash amateur astronomers into huge virtual telescope

Square Kilometre Array idea brought down to earth with ENHANCE code

Choosing a cloud hosting partner with confidence

Amateur astronomers worried that Big Astronomy would render them obsolete can relax: the kinds of techniques used to create huge virtual telescopes are now being applied to the huge collections of astro-pics published on the Internet.

As keen astronomy-watchers know, the effective aperture of telescopes can be expanded by linking multiple instruments in different parts of the world – in radio-astronomy, this is the principle behind the Square Kilometre Array, and the same techniques can be applied to optical telescopes (for example, in this proposal).

Such linking, however, is tightly-managed so that the images can be correlated, corrected, and merged to create a single composite.

What's different about the proposal in this paper at Arxiv is that its authors, led by Dustin Lang of Carnegie Mellon University (along with David Hogg of New York U and Bernhard Scholkopf of the Max Planck Institute in Germany) is that they want to correlate and combine the vast store of astronomy images that amateurs publish on the Internet.

The problems facing such a project are, unsurprisingly, formidable. Not only are the images uncalibrated, they're captured by a huge range of devices, and everybody has their own ideas about post-processing and enhancement.

With huge numbers of images available, though, Lang's group believes amateur images represent an untapped resource if these problems can be fixed. As they write, solving this problem would permit “discovery of astronomical objects or features that are not visible in any of the input images taken individually.”

The authors also add that the world's vast store of historical collections of astronomical images (whose provenance is known and which are high quality) which haven't yet been combined into any kind of “master image” for analysis.

The algorithm they've developed, which they call “Enhance”, starts by taking an initial patch of sky (referred to as the “consensus image”), and finding areas in the scraped images that match its footprint. A statistically-based voting algorithm then ranks the input images, converging towards an optimal value for each pixel.

They use software Astrometry.net, a system developed by Lang in 2009, to match images to celestial coordinates.

The results seem, at least to Vulture South's untutored eye, pretty impressive. Here, for example, is the output of Enhance obtained from a collection of shots of colliding galaxy pair M51. The algorithm was able to take a final set of 2,006 images crawled from the Internet, and combine them into the output image in 40 minutes on a single processor.

Enhanced images of the M51 galaxy

The top row shows some of the input images Lang used to create

the final composite, bottom right. Image: Lang, et al

The final tone-mapped consensus image, bottom right, shows debris from the galactic cataclysm that isn't visible in any of the individual source images.

The high performance of the algorithm – along with the claim that it shows linear scalability with an increasing number of input images – should, the authors believe, make it useful for huge numbers of input images.

Lang has set up a page on his Astrometry.net site, here, where amateurs can submit their images to become part of Enhanced composites, with a JSON API so those who are handy with software can automate the process. ®

Bootnote: Vulture South can't help but suspect the name of the algorithm, Enhance, is a wry poke at TV spies who always seem able to turn a bunch of illegible pixels into a clean number plate, just by pressing the “enhance” dialogue on their computers. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
NASA rover Curiosity drills HOLE in MARS 'GOLF COURSE'
Joins 'traffic light' and perfect stony sphere on the Red Planet
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.