Feeds

D-Wave disputes benchmark study showing sluggish quantum computer

Faulty benchmarks and sampling methods all wrong, claim Canadian quantumoids

Top 5 reasons to deploy VMware with Tegile

Quantum computing device manufacturer D-Wave is disputing a recently published study that claims the Canadian firm's systems aren't reliably faster than more-conventional computing systems.

On Thursday an international team of computer scientists published a widely previewed paper in Science detailing a series of benchmark tests pitting a 503-qubit D-Wave Two device against custom computer code running on standard GPUs. The team reports that while the D-Wave system was faster in some instances, it was considerably slower in others.

"Using random spin glass instances as a benchmark, we find no evidence of quantum speedup when the entire data set is considered, and obtain inconclusive results when comparing subsets of instances on an instance-by-instance basis," wrote the paper's lead author Matthias Troyer, a physicist at the Swiss Federal Institute of Technology.

The publication has caused something of a headache for D-Wave – and for Google, which bought one of the Canadian firm's computers last year. Some commentators have questioned the ability of D-Wave's systems to perform quantum calculations, and this latest study is from a respected team of scientists.

Colin Williams, director of business development at D-Wave, told The Register that the company has gone through the Troyer paper in detail, and thinks it knows what the problem is. In essence, the tasks set for the two computing systems were too basic for an accurate benchmarking figure to be achieved, and the number of datasets was too low.

"If you're trying to benchmark performance of a Ferrari verses a bicycle, if you put them both on a hill and let them run down the hill, then then you won't see as big an advantage for the Ferrari," Williams told us. "That's basically what happened in this test, the benchmark was far too simple and you need to use a harder selection of problems."

In addition, the GPU code Troyer's team was using had been tightly optimized for the problem set, Williams said, whereas the D-Wave system wasn't optimized for that particular benchmark code.

Google also issued its own response to the Troyer paper, noting that in its tests the firm is getting computational speeds of over 35,500 times that of conventional computing systems. It all depends on what you use the system for, it seems.

"Eyeballing this treasure trove of data, we're now trying to identify a class of problems for which the current quantum hardware might outperform all known classical solvers," Google said. "But it will take us a bit of time to publish firm conclusions."

Williams said that D-Wave hadn't heard any grumbling from customers after the Troyer paper, and work is continuing as normal. He also said that the firm has a new, upgraded quantum processing system coming out by the end of the year that will increase speeds further. ®

Beginner's guide to SSL certificates

More from The Register

next story
Ellison: Sparc M7 is Oracle's most important silicon EVER
'Acceleration engines' key to performance, security, Larry says
Oracle SHELLSHOCKER - data titan lists unpatchables
Database kingpin lists 32 products that can't be patched (yet) as GNU fixes second vuln
Lenovo to finish $2.1bn IBM x86 server gobble in October
A lighter snack than expected – but what's a few $100m between friends, eh?
Ello? ello? ello?: Facebook challenger in DDoS KNOCKOUT
Gets back up again after half an hour though
Troll hunter Rackspace turns Rotatable's bizarro patent to stone
News of the Weird: Screen-rotating technology declared unpatentable
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.