Feeds

Microsoft 'Catapults' geriatric Moore's Law from CERTAIN DEATH

FPGAs DOUBLE data center throughput despite puny power pump-up, we're told

Gartner critical capabilities for enterprise endpoint backup

Microsoft has found a way to massively increase the compute capabilities of its data centers, despite the fact that Moore's Law is wheezing towards its inevitable demise.

In a paper to be presented this week at the International Symposium on Computer Architecture (ISCA), titled A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services, a troupe of top Microsoft Research boffins explain how the company has dealt with the slowdown in single-core clock-rate improvements that has occurred over the past decade.

To get around this debilitating problem – more on this later – Microsoft has built a system it calls Catapult, which automatically offloads some of the advanced tech that powers its Bing search engine onto clusters of highly efficient, low-power FPGA chips attached to typical Intel Xeon server processors.

Think of FPGAs – field-programmable gate arrays – as chips whose circuits can be customised and tweaked as required, allowing crucial tasks to be transferred away from the Xeons and instead accelerated in FPGA hardware.

This approach may save Microsoft from a rarely acknowledged problem that lurks in the technology industry: processors are not getting much faster.

Wait. What?

For those not familiar with the chip industry, a primer. For the past 50 years, almost every aspect of our global economy has been affected by Moore's Law, which states that the number of transistors on a chip of the same size will double every 18 months – or so – resulting in faster performance and better power efficiency

One slight problem: Moore's Law is not, in fact, a law. Instead, it was an assertion by Intel founder Gordon Moore in a 1965 article that the semiconductor industry got rather carried away with. In the past ten years, the salubrious effects of Moore's Law have started to wane, because although companies are packing more and more transistors onto their chips, the performance gains that those transistors bring with them are not as great as they were during the law's halcyon days.

Intel has yoked its entire business to the successful fulfillment of Moore's Law, and proudly announces each new boost in transistor counts. And, yes, those "new" transistors can help to increase a compute core's all-important instruction per cycle (IPC) metric – improved branch prediction, larger caches, more-efficient scheduling, beefier buffers, whatever – but the simple fact is that although chips have gone multi-core and are getting better at multi-tasking, those individual cores are not getting much faster due to any significant new discovery.

As AMD CTO Joe Macri recently told us, "There's not a whole lot of revolution left in CPUs." He did, however, note that "there's a lot of evolution left."

Microsoft's Catapult is a bit of both.

Programmable software, meet programmable hardware

Under new chief executive Satya Nadella, Microsoft is throwing billions of dollars at massive data centers in its attempt to become a cloud-first company. Part of that effort – and that investment – is to figure out a way to jump-start consistent data-center compute-performance boosts.

The solution that Microsoft Research has come up with is to pair field-programmable gate arrays with typical x86 processors, then let some data-center services such as the Bing search engine offload certain well-understood operations to the arrays.

To say that the performance improvements in this approach have been noticeable would be a gross understatement. Microsoft tells us that a test deployment on 1,632 servers was able to increase query throughput by 95 per cent, while only increasing power consumption by 10 per cent.

Though FPGA technology is well understood and used widely in the embedded technology industry, it's rare to hear of it being paired with standard off-the-shelf CPUs for accelerating web-facing software – until now, that is.

"We're moving into an era of programmable hardware supporting programmable software," Microsoft Research's Doug Burger told The Register. "We're just starting down that road now."

If Microsoft has indeed figured out how to almost double the performance of its computers while only paying a tenth more in electricity for large-scale data center tasks – and we see no reason to doubt them – that's not only a huge saving, but also one that saves the company from the slowdown in run-of-the-mill CPUs chips.

"Based on the results, Bing will roll out FPGA-enhanced servers in one data center to process customer searches starting in early 2015," Derek Chiou, a principal architect of Bing, said in a statement emailed to El Reg.

"We were looking to make a big jump forward in data center capabilities. It's an important area," Microsoft Research's Doug Burger explained to us.

"We wanted to do something that we thought could put us on a path that makes some really big leaps. Rather than banking on scaling to many, many more cores, let's take a different path – what can we do in hardware? We think specialization is going to be the next big thing."

Microsoft isn't doing this on a hunch. Burger wrote a paper [PDF] in 2011, Dark Silicon and the end of Multicore Scaling, which predicted that "left to the multicore path, we may hit a 'transistor utility economics' wall in as few as three to five years, at which point Moore's Law may end, creating massive disruptions in our industry."

So far, there are few signs to the contrary. [And if you want a real horror story, take a gander at the slow development of EUV lithography — Ed.]

Secure remote control for conventional and virtual desktops

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Object storage bods Exablox: RAID is dead, baby. RAID is dead
Bring your own disks to its object appliances
Nimble's latest mutants GORGE themselves on unlucky forerunners
Crossing Sandy Bridges without stopping for breath
A beheading in EMC's ViPR lair? Software's big cheese to advise CEO
Changes amid rivalry in the storage snake pit
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.