Feeds

Microsoft in hunt for the practical qubit

Looking for a technique that scales

Choosing a cloud hosting partner with confidence

Redmond says it has joined the search for a practical qubit, in an effort to kick along the development of quantum computers.

Head of research at Microsoft Peter Lee has told the MIT Technology Review digital summit that Redmond will be supporting research in other labs with funding, as well as doing its own work at its Station Q research lab at the University of California's Santa Barbara campus.

Of course, the finicky will pull up The Register and point out, quite accurately, that all transistors are already manifestations of quantum mechanics. So it's beholden to us to better-define the “quantum transistor”.

Actually, what Redmond is after is something that can be exploited as a “fab-friendly” qubit.

Creating qubits has become almost routine in quantum research labs – in 2012, the University of New South Wales created a single-atom qubit on silicon. However, creating qubits and getting them to behave properly, as a superposition of states rather than a quantum 1 or 0, is difficult; doing so reliably is more difficult; and creating qubits in a way that could be turned into some kind of microelectronics foundry is a long way off.

Lee knows this: he told MIT Technology Review that as far as Microsoft is aware, the current approaches to creating qubits don't scale.

Microsoft's direction is to work on a “topological qubit”, which Quanta Magazine describes here. The description “topological” refers to how entanglement is created and maintained – and the point of the work is that Redmond told MIT Review it sees the approach as more robust than other research into qubits.

Only a cynic would also note that whoever successfully builds a reliable, mass-producable qubit will have IP of incalculable value, making it unlikely that MS would follow paths where others have taken the lead. ®

Bootnote: For readers unfamiliar with quantum computing or qubits. The qubit – quantum bit – is analogous to the bits you're familiar with in classical computing. The big difference is that quantum mechanics allows a qubit to occupy a superposition of its possible states – to be 1 and 0 at the same time.

With enough qubits, a quantum computer could therefore represent an awful lot of states simultaneously. If you can then ask the quantum computer the right question, its waveform should collapse into the answer. The quantum computer therefore – in theory – lets you get a complex answer in a single operation, rather than having to step through lots of iterations, as in a classical computer. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.