Feeds

Measure for measure: We visit the most applied-physicist-rich building in the UK

Like an ass whose back with kilograms of Concorde bows...

Beginner's guide to SSL certificates

Enter the Tardis

The buildings that housed most of that early work – such as the testing of the Spitfire – have gone as the work moved on to new fields. All that remains of that past is Bushy House, a country pile in Teddington, where NPL was first based in 1902, shortly after its creation in 1900 by the Royal Society.

What you tour today is the new building, completed in 2003. Inside it is like the Tardis: corridor upon corridor, room upon room. Some offices look more corporate than science – glass walls and office furniture – while others are exactly what you imagine when you think "laboratory": reinforced doors and spotless white rooms. Some labs, though are not at all what you'd imagine as places of science, as I’ll get to in a second. The number of doors sporting signs warning of radiation and lasers whip past so fast on the tour they become a blur.

The first set of labs we come to belong to NPL’s acoustics department. Here they test sound and noise and the equipment to capture and measure both - 6,000 tests a year. Tested systems are deployed in areas where there’s a strong legal requirement to make sure readings are accurate. They work on everything from testing the sensitivity of microphones used in medicine to devices used to measure noise pollution. They’ve worked with at least one food manufacturer to test the loudness of the crunch of their biscuits.

Hemi anechoic chamber, photo: Gavin Clarke

Janine Avison in NPL's hemi anechoic chamber. Photo: Gavin Clarke

Tests are so stringent, the calibration work by NPL provides a reference standard used to calibrate other people's microphones. NPL claims to achieve minimal inaccuracy on sounds quieter than the level of human hearing at 0.03 dB on mics in the range of 2Hz to 25kHz. Every test that goes out of the lab can be tracked back to ensure accountability, with data queried via spreadsheet or text file.

From small mics to very large tanks

“We send mics around the world,” acoustics group higher research scientist Janine Avison told us. “We are one of 12 labs that that measure and we compare the results of our testing rigs.”

The particular room we’re in looks rather ordinary: white and spotless with work benches and sockets. In the corner sits a rig sprouting wires which relies on software built by NPL to perform pressure measurements on microphones. NPL differs from most other labs, which use an off-the-shelf reciprocity system from a Danish company called Bruel & Kjaer.

The setup measures air pressure, temperature and humidity; there’s a signal generator and two lock-in amplifiers combined with the microphones, their pre-amplifiers and their power suppliers. “Powerful” software tools are used to isolate and examine every part of the calibration in detail, Avison says.

Mic, photo: Gavin Clarke

Mics come under pressure (testing) at NPL. Photo: Gavin Clarke

Next, we visit NPL’s Large Pressure Tank, which is used to calibrate hydrophones and sonar transducers - which turn electrical signals into sound. Such equipment is used in areas like testing and measuring underwater noise pollution in the range of 1kHz and 1MHz.

NPL has two tanks but we view the larger – 5.5 metres in diameter and 5 metres deep.

This is one of those NPL laboratories I mentioned that doesn’t look like a science lab. This one looks more like the inside of a nuclear reactor chamber: a large almost empty floor space save for portals that let you peek down into deep, green-blue coloured water beneath and with various pieces of equipment ready to glide about the top.

This is a split-level lab, though, and go out the door, down a flight of stairs, open a grey-white set of doors and you find yourself squeezing into a room full of huge metal frame and massive wooden barrel. It contains the Large Pressure Tank's 80 tons of water that we were just gazing down.

The whole setup includes a submarine-line Acoustic Pressure Vessel used to simulate ocean conditions that can be pressurised to simulate ocean depths of up to 700m and temperatures of between 2˚ to 35˚C.

Internet Security Threat Report 2014

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.