Feeds

Interstellar FIGHT CLUB: Watch neutron star TEAR Goliath a new hole

Super-heavyweight fighters go head to head, leaving destruction in their wake

A new approach to endpoint data protection

Vid Ever wanted to see two super-dense neutron stars rip each other apart in a mega-annihilation that leaves nothing behind but a gaping black hole? Now you can, after NASA put together a supercomputer simulation of just such an event in our universe.

Youtube video

A neutron star is the compressed core left behind when a huge star eight to 30 times larger than our Sun ignites. In the video from Goddard Space Flight Center boffins, two city-sized, dense remnants of these violent supernova explosions drift through space just 18km (11 miles) apart.

Both the neutron stars are packing huge masses into incredibly dense packages, but they’re not evenly matched. One of the behemoths is 1.7 times more massive than our Sun, while the other is 1.4 times bigger.

As the neutron stars get closer and closer, both heading for an epic collision, intense tidal forces start to deform them, breaking through their thin skins. Neutron stars are dense throughout, but their surfaces are only about a million times more dense than gold – that's flimsy compared to densities 100 million times greater in their centres, where a cubic centimetre has a mass equivalent to out planet's Mount Everest.

The stars' outer layers are cracking, but its the smaller body that shatters first as the larger one crushes it with overwhelming tidal forces. The smaller star's superdense contents erupt out into the system, creating a spiral arm of incredibly hot material. Its life as a neutron star is over, but it will have its revenge.

Mere milliseconds later, the more massive star ends up sucking up too much of this expelled mass to support itself against gravity – and it collapses, creating a black hole.

Most of the matter left from the stars’ demises will fall into this hole, leaving just the less dense, faster moving matter to orbit around it in a rapidly rotating torus extending for about 200km (124 miles).

Scientists think neutron star smashups like this one produce short gamma-ray bursts that last for less than two seconds, but unleash as much energy as all the stars in the Milky Way emit in a year.

To understand those bursts, boffins need to config instruments on ground-based telescopes to capture the afterglows as soon as possible, a task NASA says has become a lot easier with rapid notification and accurate positions from its Swift mission. The Swift satellite can relay the position of a gamma-ray burst within seconds of detection, giving ground and space-based 'scopes the chance to get a look at the afterglow. ®

The Essential Guide to IT Transformation

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Brit amateur payload set to complete full circle around PLANET EARTH
Ultralight solar radio tracker in glorious 25,000km almost-space odyssey
Boffins spot weirder quantum capers as neutrons take the high road, spin takes the low
Cheshire cat effect see neutrons and their properties walk different paths
NASA Mars rover FINALLY equals 1973 Soviet benchmark
Yet to surpass ancient Greek one, however
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
prev story

Whitepapers

7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?