Feeds

Interstellar FIGHT CLUB: Watch neutron star TEAR Goliath a new hole

Super-heavyweight fighters go head to head, leaving destruction in their wake

Beginner's guide to SSL certificates

Vid Ever wanted to see two super-dense neutron stars rip each other apart in a mega-annihilation that leaves nothing behind but a gaping black hole? Now you can, after NASA put together a supercomputer simulation of just such an event in our universe.

Youtube video

A neutron star is the compressed core left behind when a huge star eight to 30 times larger than our Sun ignites. In the video from Goddard Space Flight Center boffins, two city-sized, dense remnants of these violent supernova explosions drift through space just 18km (11 miles) apart.

Both the neutron stars are packing huge masses into incredibly dense packages, but they’re not evenly matched. One of the behemoths is 1.7 times more massive than our Sun, while the other is 1.4 times bigger.

As the neutron stars get closer and closer, both heading for an epic collision, intense tidal forces start to deform them, breaking through their thin skins. Neutron stars are dense throughout, but their surfaces are only about a million times more dense than gold – that's flimsy compared to densities 100 million times greater in their centres, where a cubic centimetre has a mass equivalent to out planet's Mount Everest.

The stars' outer layers are cracking, but its the smaller body that shatters first as the larger one crushes it with overwhelming tidal forces. The smaller star's superdense contents erupt out into the system, creating a spiral arm of incredibly hot material. Its life as a neutron star is over, but it will have its revenge.

Mere milliseconds later, the more massive star ends up sucking up too much of this expelled mass to support itself against gravity – and it collapses, creating a black hole.

Most of the matter left from the stars’ demises will fall into this hole, leaving just the less dense, faster moving matter to orbit around it in a rapidly rotating torus extending for about 200km (124 miles).

Scientists think neutron star smashups like this one produce short gamma-ray bursts that last for less than two seconds, but unleash as much energy as all the stars in the Milky Way emit in a year.

To understand those bursts, boffins need to config instruments on ground-based telescopes to capture the afterglows as soon as possible, a task NASA says has become a lot easier with rapid notification and accurate positions from its Swift mission. The Swift satellite can relay the position of a gamma-ray burst within seconds of detection, giving ground and space-based 'scopes the chance to get a look at the afterglow. ®

Internet Security Threat Report 2014

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.