Feeds

Interstellar FIGHT CLUB: Watch neutron star TEAR Goliath a new hole

Super-heavyweight fighters go head to head, leaving destruction in their wake

The smart choice: opportunity from uncertainty

Vid Ever wanted to see two super-dense neutron stars rip each other apart in a mega-annihilation that leaves nothing behind but a gaping black hole? Now you can, after NASA put together a supercomputer simulation of just such an event in our universe.

Youtube video

A neutron star is the compressed core left behind when a huge star eight to 30 times larger than our Sun ignites. In the video from Goddard Space Flight Center boffins, two city-sized, dense remnants of these violent supernova explosions drift through space just 18km (11 miles) apart.

Both the neutron stars are packing huge masses into incredibly dense packages, but they’re not evenly matched. One of the behemoths is 1.7 times more massive than our Sun, while the other is 1.4 times bigger.

As the neutron stars get closer and closer, both heading for an epic collision, intense tidal forces start to deform them, breaking through their thin skins. Neutron stars are dense throughout, but their surfaces are only about a million times more dense than gold – that's flimsy compared to densities 100 million times greater in their centres, where a cubic centimetre has a mass equivalent to out planet's Mount Everest.

The stars' outer layers are cracking, but its the smaller body that shatters first as the larger one crushes it with overwhelming tidal forces. The smaller star's superdense contents erupt out into the system, creating a spiral arm of incredibly hot material. Its life as a neutron star is over, but it will have its revenge.

Mere milliseconds later, the more massive star ends up sucking up too much of this expelled mass to support itself against gravity – and it collapses, creating a black hole.

Most of the matter left from the stars’ demises will fall into this hole, leaving just the less dense, faster moving matter to orbit around it in a rapidly rotating torus extending for about 200km (124 miles).

Scientists think neutron star smashups like this one produce short gamma-ray bursts that last for less than two seconds, but unleash as much energy as all the stars in the Milky Way emit in a year.

To understand those bursts, boffins need to config instruments on ground-based telescopes to capture the afterglows as soon as possible, a task NASA says has become a lot easier with rapid notification and accurate positions from its Swift mission. The Swift satellite can relay the position of a gamma-ray burst within seconds of detection, giving ground and space-based 'scopes the chance to get a look at the afterglow. ®

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.