Feeds

Convergence as a new new thing

The only way performance can go is up, says Dave Cartwright

Choosing a cloud hosting partner with confidence

Feature Nearly 20 years ago I was technical editor of a weekly networking and telecoms newspaper. In those days the big word was “convergence” – at that time in the context of telephony and data coming together into a single network infrastructure and protocol set. Here we are in 2014, and that word is once again being bandied about – this time in the much larger context of the entire set of components of the technology infrastructure.

The changing face of convergence

When we were talking about CTI convergence in the 1990s it was primarily about bringing telephony into a world where it communicated using the same networks (primarily Ethernet) and protocols (generally IP) as data systems, thus eliminating the need for complex gateways and expensive software that translated between two separate worlds. These days IP is ubiquitous and so there's a far lesser need for gateway devices and inter-protocol translation.

The problem is, though, that a standard such as Ethernet and IP is merely a lowest-common-denominator means of making A communicate with B. If you're basing your applications and systems on a technology because it gives them the ability to communicate, the chances are that at least some of the applications will perform less well with that technology than they did with their own proprietary protocols. Technology is a land of compromise, and it's usually the case that compatibility is achieved at the expense of performance. Convergence, then, is no longer a case of standardising on a chosen set of protocols.

Vertical connectivity

In our 1990s example we were concerned with connecting two devices together and making them communicate with each other. Those devices were, however, pretty much stand-alone entities. You had a phone system (a box with some lights and ports) communicating with a server (another box with some lights and ports). Today, however, both of these devices are considerably more complex – they're no longer single devices but potentially complex stacks of technology.

Let's confine ourselves for the moment to the hardware side of things (albeit both virtual and physical) – we'll get to applications later. Taking a typical server in a virtualised infrastructure we have:

  • An operating system running on a virtual server.
  • A virtual server, running in a hypervisor such as Hyper-V or ESX.
  • A virtual network switch, running on the same hypervisor.
  • A set of physical network adaptors to which the virtual switches connect.
  • A physical server hosting the network adaptors.
  • A Storage Area Network (SAN) connecting the server to external storage media in a SAN – either iSCSI via the abovementioned LAN or Fibre Channel via its own switching fabric.
  • A SAN controller front-ending a set of disk arrays.
  • The disk arrays providing the storage.
  • A LAN connecting the server to other devices in the organisation.

The path from OS to disk is, therefore, considerably longer than it was in the days before virtualisation. Every inter-layer interface introduces a delay of some sort – no matter how minuscule these are on their own, they can add up to something significant and unacceptable. A message from the top layer to the bottom layer travels through the interfaces between each of the pairs of layers. The first obvious reaction is to contemplate the idea of compressing two or more of the layers back into their old model, but this is generally unpalatable since they wouldn't have been split had there not been a good reason.

For example, SAN storage makes more sense than internal dedicated storage because it minimises unused local disk space and enables efficiencies through de-duplication and dynamic storage reallocation. Virtual servers bring similar efficiencies of resource sharing and power consumption when compared to physical servers.

Since we're not going to do away with this more-layers-than-before model, we have a problem – or perhaps we should call it an opportunity for efficiency. For the operating system on server A to talk to the operating system on server B it has to send messages down through the layers, across the LAN, and up through the layers to server B.

It's highly likely that we can't make the communication between the layers any more efficient, so perhaps we could make the process more efficient by short-cutting the communications somehow and cutting out one or more layers in some of our transactions.

Remote control for virtualized desktops

More from The Register

next story
Just don't blame Bono! Apple iTunes music sales PLUMMET
Cupertino revenue hit by cheapo downloads, says report
The DRUGSTORES DON'T WORK, CVS makes IT WORSE ... for Apple Pay
Goog Wallet apparently also spurned in NFC lockdown
IBM, backing away from hardware? NEVER!
Don't be so sure, so-surers
Hey - who wants 4.8 TERABYTES almost AS FAST AS MEMORY?
China's Memblaze says they've got it in PCIe. Yow
Microsoft brings the CLOUD that GOES ON FOREVER
Sky's the limit with unrestricted space in the cloud
This time it's SO REAL: Overcoming the open-source orgasm myth with TODO
If the web giants need it to work, hey, maybe it'll work
'ANYTHING BUT STABLE' Netflix suffers BIG Europe-wide outage
Friday night LIVE? Nope. The only thing streaming are tears down my face
Google roolz! Nest buys Revolv, KILLS new sales of home hub
Take my temperature, I'm feeling a little bit dizzy
Storage array giants can use Azure to evacuate their back ends
Site Recovery can help to move snapshots around
prev story

Whitepapers

Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.