Feeds

Get BENT: Flexy supercapacitor breaks records

Carbon nanofibre comparable with lithium batteries

The essential guide to IT transformation

It doesn't sound like a huge number, but 6.3 milliwatt-hours per cubic mm is a breakthrough: it's the highest volumetric energy density so far achieved in a microscale carbon-based supercapacitor.

Such devices are keenly sought in electronics research to drive the growing wearables market, since battery life is a big issue among glassholes and fitness-tracker owners alike. The right supercaps would be a boon, offering decent battery life and faster charging than the ubiquitous Li-ion battery.

In a paper at Nature Nanotechnology (abstract here), researchers from Nanyang Technological University (NTU) in Singapore, Tsinghua University in China, and Case Western Reserve University in the United States describe their supercapacitor as: “a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets.”

Apart from energy density, what's really excited the group is that they've created a scalable process to produce their materials. They say they've produced their carbon microfibres in 50 metre lengths, and see no serious limit to scalability.

The challenge for supercapacitors is that you need to offer a large surface area for carrying charges. A conventional capacitor is a simple creature indeed: charge-carrying foil plates, separated by a dielectric. That kind of cap' can deliver high current, but only for a short time – to store more charge, a supercapacitor has to squeeze a much higher surface area in a similar volume, while still keeping the positive and negative plates separated.

The group, led by NTU professor Yuan Chen, created a setup in which a solution containing single-wall nanotubes, graphene oxide, and ethylenediamine is pumped through a capillary column and heated in an oven for six hours.

The process causes sheets of graphene and carbon nanotubes to self-assemble into a network that runs along the length of the fibre. The resulting material, essentially a long fibrous capacitor, presents 396m2 of surface area per gram of fibre, giving the material its high capacity.

It can also be woven, which opens up applications like “smart clothing” or, more prosaically, to power medical devices, and the group claims good performance over 10,000 charge cycles.

The group says the 6.3 milliwatt-hour per cubic mm result is comparable to a 4V, 500 micro-amp-hour lithium thin film battery. ®

Gartner critical capabilities for enterprise endpoint backup

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
prev story

Whitepapers

Best practices for enterprise data
Discussing how technology providers have innovated in order to solve new challenges, creating a new framework for enterprise data.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?