Feeds

Get BENT: Flexy supercapacitor breaks records

Carbon nanofibre comparable with lithium batteries

Intelligent flash storage arrays

It doesn't sound like a huge number, but 6.3 milliwatt-hours per cubic mm is a breakthrough: it's the highest volumetric energy density so far achieved in a microscale carbon-based supercapacitor.

Such devices are keenly sought in electronics research to drive the growing wearables market, since battery life is a big issue among glassholes and fitness-tracker owners alike. The right supercaps would be a boon, offering decent battery life and faster charging than the ubiquitous Li-ion battery.

In a paper at Nature Nanotechnology (abstract here), researchers from Nanyang Technological University (NTU) in Singapore, Tsinghua University in China, and Case Western Reserve University in the United States describe their supercapacitor as: “a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets.”

Apart from energy density, what's really excited the group is that they've created a scalable process to produce their materials. They say they've produced their carbon microfibres in 50 metre lengths, and see no serious limit to scalability.

The challenge for supercapacitors is that you need to offer a large surface area for carrying charges. A conventional capacitor is a simple creature indeed: charge-carrying foil plates, separated by a dielectric. That kind of cap' can deliver high current, but only for a short time – to store more charge, a supercapacitor has to squeeze a much higher surface area in a similar volume, while still keeping the positive and negative plates separated.

The group, led by NTU professor Yuan Chen, created a setup in which a solution containing single-wall nanotubes, graphene oxide, and ethylenediamine is pumped through a capillary column and heated in an oven for six hours.

The process causes sheets of graphene and carbon nanotubes to self-assemble into a network that runs along the length of the fibre. The resulting material, essentially a long fibrous capacitor, presents 396m2 of surface area per gram of fibre, giving the material its high capacity.

It can also be woven, which opens up applications like “smart clothing” or, more prosaically, to power medical devices, and the group claims good performance over 10,000 charge cycles.

The group says the 6.3 milliwatt-hour per cubic mm result is comparable to a 4V, 500 micro-amp-hour lithium thin film battery. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that STINK? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Kip Thorne explains how he created the black hole for Interstellar
Movie special effects project spawns academic papers on gravitational lensing
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.