Feeds

Net tech bods at IETF mull anti-NSA crypto-key swaps in future SSL

'Perfect example of how Snowden has improved our privacy' says professor

Providing a secure and efficient Helpdesk

Standards stewards on the Internet Engineering Task Force (IETF) are planning to drop RSA key exchanges from TLS 1.3, the next revision of SSL.

The technical body is instead eying up algorithms that use short-lived encryption keys, aka ephemeral keys, that can sidestep surveillance dragnets by the likes of the NSA.

Specifically, the IETF has backed Diffie-Hellman key exchange (DHE) and ‪Elliptic Curve Diffie-Hellman‬ key exchange (ECDHE) over RSA because the former two support Perfect Forward Secrecy (PFS).

When a server and a client use SSL/TLS, they must agree upon a unique encryption key valid for just that connection session – and use it to protect their communications from eavesdroppers and tamperers.

How that session key is transported between the client and server is crucial here: in RSA key exchange, the client generates the temporary key, encrypts it using the server's public RSA key, and sends it over the network. The server uses its corresponding RSA private key to decrypt the session key – now both sides have what they need.

But if that private key falls into the wrong hands, the session key can be intercepted and deciphered, allowing a snooper to unlock past and future conversations between the server and its clients.

However, PFS ensures that the ephemeral session key is never exchanged in whole over the network between the two partners.

Thus even if, say, an NSA g-man silently intercepts the pair's network traffic and then gains access to the web server's private key used to initiate the connection, the spy cannot recover the session key and decrypt the snooped data.

And even if the eavesdropper somehow obtained the temporary key, it's only good for that session and that session only.

The practical upshot is that the use of PFS makes life harder for cyber-spies, whether they're from the NSA, GCHQ, Russia, China or Iran, and so on. It also makes life much more difficult for snooping crooks.

The move by the IETF to drop RSA key transport from future SSL versions emerged in a brief post to the TLS mailing list by Joseph Salowey, an engineer at Cisco and chairman of the IETF TLS working group:

The discussion on this list and others supports the consensus in IETF 89 to remove RSA key transport cipher suites from TLS 1.3. The editor is requested to make the appropriate changes to the draft on ‪GitHub‬.

More discussion is needed on [how] both DH and ECDH are used going forward and on if standard DHE parameters will be specified.

Salowey goes on to expand the reasons why the RSA key swap is no longer up to the job of underpinning secure data exchange in the post-Ed-Snowden era:

TLS has had cipher suites based on RSA key transport (aka "static RSA", TLS_RSA_WITH_*) since the days of SSL 2.0. These cipher suites have several drawbacks including lack of PFS, pre-master secret contributed only by the client, and the general weakening of RSA over time. It would make the security analysis simpler to remove this option from TLS 1.3. RSA certificates would still be allowed, but the key establishment would be via DHE or ECDHE. The consensus in the room at IETF-89 was to remove RSA key transport from TLS 1.3.

The RSA cryptosystem can be used for much more than just key transport, as explained by Thomas Pornin on the Information Security Stack Exchange, here.

Cryptographers have welcomed the decision to deprecate RSA key exchange from TLS 1.3.

"In case you're missing context: the removal of RSA in the next version of TLS is a perfect example of how Snowden has improved our privacy," said Matthew Green, a professor of computer science who teaches cryptography at Maryland's Johns Hopkins University.

Reg reader Arnold Yau, who drew our attention to the IETF's work, commented: "The only downside is many textbooks will need to be updated as they tend to use RSA key transport in TLS examples."

"Of course this forward secrecy won't mitigate against [SSL] implementation bugs, such as Heartbleed or [Apple's] goto fail etc," Yau added. ®

New hybrid storage solutions

More from The Register

next story
Google recommends pronounceable passwords
Super Chrome goes into battle with Mr Mxyzptlk
Apple Pay is a tidy payday for Apple with 0.15% cut, sources say
Cupertino slurps 15 cents from every $100 purchase
Reddit wipes clean leaked celeb nudie pics, tells users to zip it
Now we've had all THAT TRAFFIC, we 'deplore' this theft
YouTube, Amazon and Yahoo! caught in malvertising mess
Cisco says 'Kyle and Stan' attack is spreading through compromised ad networks
TorrentLocker unpicked: Crypto coding shocker defeats extortionists
Lousy XOR opens door into which victims can shove a foot
Greater dev access to iOS 8 will put us AT RISK from HACKERS
Knocking holes in Apple's walled garden could backfire, says securo-chap
Microsoft to patch ASP.NET mess even if you don't
We know what's good for you, because we made the mess says Redmond
NORKS ban Wi-Fi and satellite internet at embassies
Crackdown on tardy diplomatic sysadmins providing accidental unfiltered internet access
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.