Feeds

Quantum Key Distribution proven to work over everyday fibre

Quantum security without dedicated fibre

The essential guide to IT transformation

A group which in 2012 gave a laboratory demonstration of quantum key distribution (QKD) using lit fibre has taken its next step, demonstrating its technology in a field trial in the UK.

Two years ago, El Reg reported the National Physical Laboratory (NPL) led a project that achieved a 500 Kbps key distribution rate on a 50km fibre that was also carrying 1 Gbps of conventional optical network traffic in both directions.

Now, the NPL's group has conducted a field trial of the technology using a BT link between its Adastral Park laboratory in Suffolk and another BT site in Ipswich, about 18 km away as the crow flies.

Other participants in the project included Toshiba Research Europe (which provided the quantum kit), British Telecom, and ADVA Optical Networking (which provided encryption equipment).

The achievement is a big step towards widespread deployment of QKD. While commercial products exist today, they require a dark fibre between the two ends of the link to carry the quantum information – and that's expensive because those who lay fibres like them to be used as often as possible.

As the NPL release states: “The use of a single fibre is significant, as both the quantum 'key' and the encrypted data can now use the same pathway for the first time. Previously, two or three fibres were needed to deliver a secure connection.”

The problem the research group had to overcome is noise. QKD encodes encryption keys onto the quantum states of small numbers of photons, which need to be both counted and measured by the receiver. If an attacker tries to eavesdrop on the key exchange, the quantum states are destroyed, revealing the presence of the attacker.

However, other signals on the same fibre present as noise to the quantum channel – and noise destroys the quantum states you're trying to detect. Filtering out the noise was the key to this demonstration, according to Toshiba Research Europe's Andrew Shields.

NPL's Alastair Sinclair said his organisation's contribution to the research was developing techniques to measure the individual photons, “which we are using to independently verify the security of the system”. ®

Next gen security for virtualised datacentres

More from The Register

next story
e-Borders fiasco: Brits stung for £224m after US IT giant sues UK govt
Defeat to Raytheon branded 'catastrophic result'
Snowden on NSA's MonsterMind TERROR: It may trigger cyberwar
Plus: Syria's internet going down? That was a US cock-up
Who needs hackers? 'Password1' opens a third of all biz doors
GPU-powered pen test yields more bad news about defences and passwords
Think crypto hides you from spooks on Facebook? THINK AGAIN
Traffic fingerprints reveal all, say boffins
Microsoft cries UNINSTALL in the wake of Blue Screens of Death™
Cache crash causes contained choloric calamity
Germany 'accidentally' snooped on John Kerry and Hillary Clinton
Dragnet surveillance picks up EVERYTHING, USA, m'kay?
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.