Feeds

Quantum Key Distribution proven to work over everyday fibre

Quantum security without dedicated fibre

Securing Web Applications Made Simple and Scalable

A group which in 2012 gave a laboratory demonstration of quantum key distribution (QKD) using lit fibre has taken its next step, demonstrating its technology in a field trial in the UK.

Two years ago, El Reg reported the National Physical Laboratory (NPL) led a project that achieved a 500 Kbps key distribution rate on a 50km fibre that was also carrying 1 Gbps of conventional optical network traffic in both directions.

Now, the NPL's group has conducted a field trial of the technology using a BT link between its Adastral Park laboratory in Suffolk and another BT site in Ipswich, about 18 km away as the crow flies.

Other participants in the project included Toshiba Research Europe (which provided the quantum kit), British Telecom, and ADVA Optical Networking (which provided encryption equipment).

The achievement is a big step towards widespread deployment of QKD. While commercial products exist today, they require a dark fibre between the two ends of the link to carry the quantum information – and that's expensive because those who lay fibres like them to be used as often as possible.

As the NPL release states: “The use of a single fibre is significant, as both the quantum 'key' and the encrypted data can now use the same pathway for the first time. Previously, two or three fibres were needed to deliver a secure connection.”

The problem the research group had to overcome is noise. QKD encodes encryption keys onto the quantum states of small numbers of photons, which need to be both counted and measured by the receiver. If an attacker tries to eavesdrop on the key exchange, the quantum states are destroyed, revealing the presence of the attacker.

However, other signals on the same fibre present as noise to the quantum channel – and noise destroys the quantum states you're trying to detect. Filtering out the noise was the key to this demonstration, according to Toshiba Research Europe's Andrew Shields.

NPL's Alastair Sinclair said his organisation's contribution to the research was developing techniques to measure the individual photons, “which we are using to independently verify the security of the system”. ®

The smart choice: opportunity from uncertainty

More from The Register

next story
BMW's ConnectedDrive falls over, bosses blame upgrade snafu
Traffic flows up 20% as motorway middle lanes miraculously unclog
Putin: Crack Tor for me and I'll make you a MILLIONAIRE
Russian Interior Ministry offers big pile o' roubles for busting pro-privacy browser
Mozilla fixes CRITICAL security holes in Firefox, urges v31 upgrade
Misc memory hazards 'could be exploited' - and guess what, one's a Javascript vuln
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
How long is too long to wait for a security fix?
Synology finally patches OpenSSL bugs in Trevor's NAS
Don't look, Snowden: Security biz chases Tails with zero-day flaws alert
Exodus vows not to sell secrets of whistleblower's favorite OS
Roll out the welcome mat to hackers and crackers
Security chap pens guide to bug bounty programs that won't fail like Yahoo!'s
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.