Feeds

Get ready for software-defined RADAR: Jam, eavesdrop, talk and target ... simultaneously

Multi-GPU wizardry from General Electric

The essential guide to IT transformation

HPC blog

With a big RF transmitter and enough fast computing power, you have the ability to do a lot of different things, as evidenced by a General Electric presentation on "software-defined radar" at the GPU conference this year.

At GTC 13 last year, GE gave a standing-room-only presentation about how it's using RDMA (Remote Direct Memory Access) to drive multi-GPU process performance to new heights. The firm was back this year to talk about new and innovative applications of GPU tech it has cooked up over the past year.

In its session, Dustin Franklin, GE GPU Applications Engineer guru, gives us an update on how it has been proceeding with RDMA and how it allows the electric company to build large scale, multi-node, products.

What's really interesting are the types of products that this is now making possible. For example, consider software-defined radar. With a big RF transmitter and enough fast computing power, you have the ability to do a lot of different things.

For example, the same radar dome can be used for MTI (Moving Target Radar), SAR (Synthetic Aperture Radar), radar-jamming, and even as a communications channel. Using GPUs to configure the output and interpret the returning waves, GE has found that it’s possible to do all of these functions simultaneously, if necessary.

How it works: Simultaneous transmit/receive for a whole load of functions

In the past, each of these functions would require dedicated DSPs (Digital Signal Processors) or FPGA processors, developed at the cost of hundreds or thousands of man hours. With software-defined radar, the same hardware is used in multiple ways and can be quickly re-configured to better handle new tasks and requirements.

Franklin also talked about how GE will be using the new Tegra K1 GPU device to make compact and ruggedized products for the battlefield and beyond. He also speculates about how having 325 GFlop/s of performance in a sensor (delivered by 192 CUDA cores plus 4 ARM cores) could change the game when it comes to how we use sensors.

Insert chip here: Some of GE's suggested applications for the Tegra K1 battlefield GPU

Typically, sensors gather data and deliver it somewhere else for processing and interpretation. Sensor output is then delivered to interested parties. But the Tegra K1 packs a lot of processing punch in a 5-7 watt package, so why not have it handle processing and interpretation tasks, then deliver the output to the folks who need it? This could significantly reduce the time needed to get vital data to the people who need it the most.

Towards the end of the session, we learned that GE has the world’s first Tegra K1 demonstration box in their booth on the show floor. It’s a combination streaming video/LIDAR device that shows and tracks targets (show floor traffic in this case). I’ll have some video on this in the next few days.

To finish up, Franklin discussed GE experience with Kepler vs. Maxwell GPUs, including the architectural and performance differences. He shows some of their internal benchmark results and talks about the implications.

Take a look at the 20-minute presentation to get a glimpse at the cutting edge of defence technology. You’ll want to watch if you’re a defence minister who wants to see what’s coming down the road, or perhaps if you’re the head of a junta who might be coming up against Western military forces in the near future. ®

Boost IT visibility and business value

More from The Register

next story
Pay to play: The hidden cost of software defined everything
Enter credit card details if you want that system you bought to actually be useful
Shoot-em-up: Sony Online Entertainment hit by 'large scale DDoS attack'
Games disrupted as firm struggles to control network
HP busts out new ProLiant Gen9 servers
Think those are cool? Wait till you get a load of our racks
Silicon Valley jolted by magnitude 6.1 quake – its biggest in 25 years
Did the earth move for you at VMworld – oh, OK. It just did. A lot
VMware's high-wire balancing act: EVO might drag us ALL down
Get it right, EMC, or there'll be STORAGE CIVIL WAR. Mark my words
Forrester says it's time to give up on physical storage arrays
The physical/virtual storage tipping point may just have arrived
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.