Feeds

Georgia Tech touts polymer heatsink interface

Nanofibres survive 200°C temps

Top 5 reasons to deploy VMware with Tegile

Researchers at Georgia Tech say they've created a polymer that can improve the interface between silicon and heatsinks, and offers a long lifetime in terms of heating and cooling cycles.

In this release, the group led by assistant professor Baratunde Cola says they've created a polymer that operates as a heat conductor (rather than being an insulator, which is more normal for polymers), and can stand temperatures of up to 200°C.

It's also suitable for being fabricated onto devices like heatsinks, with good adhesion to surfaces, they say.

As IEEE Spectrum notes, once heat is drawn away from a device like a chip, dissipating it is most commonly a matter of getting enough cool air blown across the heatsink. That puts a premium on finding ways to better couple the device to the heatsink.

To turn a polymer into a heat conductor, the Georgia Tech release says, the researchers used an electropolymerisation process to create aligned nanofibres in the polymer, rather than the disordered state typical of polymers.

Polymer heatsink

Georgia Tech researcher Virendra Singh holding a test sample. Image: Candler Hobbs, Georgia Tech

This, however, leaves another obstacle to overcome: the crystalline structures that make the resulting polymers better heat conductors can also make them more brittle.

“The new interface material is produced from a conjugated polymer, polythiophene, in which aligned polymer chains in nanofibers facilitate the transfer of phonons – but without the brittleness associated with crystalline structures,” the release says. “Formation of the nanofibers produces an amorphous material with thermal conductivity of up to 4.4 watts per meter Kelvin at room temperature.”

To fabricate the material, the researchers covered an aluminium template containing tiny pores with an electrolyte containing “monomer precursors”. These were formed into hollow nanofibres by applying a voltage to the template. The electropolymerisation process then cross-links the nonfibres.

Either water or an adhesive can then be used to apply the resulting material to the target device.

“The new material could allow reliable thermal interfaces as thin as three microns – compared to as much as 50 to 75 microns with conventional material”, the release states.

Their work is published in Nature Nanotechnology, abstract here. ®

Remote control for virtualized desktops

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.