Feeds

Georgia Tech touts polymer heatsink interface

Nanofibres survive 200°C temps

Boost IT visibility and business value

Researchers at Georgia Tech say they've created a polymer that can improve the interface between silicon and heatsinks, and offers a long lifetime in terms of heating and cooling cycles.

In this release, the group led by assistant professor Baratunde Cola says they've created a polymer that operates as a heat conductor (rather than being an insulator, which is more normal for polymers), and can stand temperatures of up to 200°C.

It's also suitable for being fabricated onto devices like heatsinks, with good adhesion to surfaces, they say.

As IEEE Spectrum notes, once heat is drawn away from a device like a chip, dissipating it is most commonly a matter of getting enough cool air blown across the heatsink. That puts a premium on finding ways to better couple the device to the heatsink.

To turn a polymer into a heat conductor, the Georgia Tech release says, the researchers used an electropolymerisation process to create aligned nanofibres in the polymer, rather than the disordered state typical of polymers.

Polymer heatsink

Georgia Tech researcher Virendra Singh holding a test sample. Image: Candler Hobbs, Georgia Tech

This, however, leaves another obstacle to overcome: the crystalline structures that make the resulting polymers better heat conductors can also make them more brittle.

“The new interface material is produced from a conjugated polymer, polythiophene, in which aligned polymer chains in nanofibers facilitate the transfer of phonons – but without the brittleness associated with crystalline structures,” the release says. “Formation of the nanofibers produces an amorphous material with thermal conductivity of up to 4.4 watts per meter Kelvin at room temperature.”

To fabricate the material, the researchers covered an aluminium template containing tiny pores with an electrolyte containing “monomer precursors”. These were formed into hollow nanofibres by applying a voltage to the template. The electropolymerisation process then cross-links the nonfibres.

Either water or an adhesive can then be used to apply the resulting material to the target device.

“The new material could allow reliable thermal interfaces as thin as three microns – compared to as much as 50 to 75 microns with conventional material”, the release states.

Their work is published in Nature Nanotechnology, abstract here. ®

Boost IT visibility and business value

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Flamewars in SPAAACE: cooler fires hint at energy efficiency
Experiment aboard ISS shows we should all chill out for cleaner engines
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.