CERN team uses GPUs to discover if antimatter falls up, not down

Einstein's General Relativity theory may be in for 'a big surprise'

Beginner's guide to SSL certificates

GTC In the next year or two, researchers at CERN's Large Hadron Collider (LHC) should be able to answer one of the most fundamental questions bedeviling physicists: what is the effect of gravity on antimatter?

As we all learned back in high school, matter falls to Earth at an acceleration of 9.8 meters per second squared, and according to the weak equivalence principle (WEP), that acceleration is the same for all bodies independent of their size, mass, or composition – in a vacuum, of course.

But is the same true for antimatter? Or does it fall faster, slower – or, possibly, does it "fall" upwards, away from the gravitational force?

No one knows – but an international group of European researchers, the AEgIS Collaboration – Antimatter Experiment: gravity, Interferometry, Spectroscopy – aims to find out with the help of the parallel-processing powers of GPUs.

"The principle of equivalence between gravitational and inertial mass is a foundation of General Relativity," explained Akitaka Ariga of the University of Bern, Switzerland, at last week's GPU Technology Conference (GTC) in San José, California.

"General Relativity is a very fundamental role in our physics, invented by Einstein," Ariga said, "but when Einstein made this theory, he didn't know that antimatter existed in the world."

Until now, there has been no need to adjust the theory of General Relativity to account for the behavior of antimatter in a gravitational field because no one has been able to measure that behavior – and that's the information that Ariga and the AEgIS Collaboration aim to supply, with a goal of accuracy within one per cent.

Ariga explained that the methodology behind the measurement is "simple" – create antiprotons and anti-electrons (positrons), combine them to create anti-hydrogen atoms, then fire them in an anti-hydrogen beam at a photographic emulsion–based detector, where the anti-hydrogen atoms will be annihilated by their collision with the matter in the detector.

"We then measure how much it falls," he said, "and it is expected that it [will be on the] order of 10 microns it will fall. Or it may fall up. So if we find that it falls up, this is a big surprise and big discovery."

From the AEgIS Collaboration's point of view, that's the easy part. What is a challenge, Ariga says, will be wrangling the enormous amount of data produced by the experiment, which will produce 3D images of grains in the photographic emulsion excited by the tracks of particles resulting from the energy released by the antimatter-matter annihilation.

AEgIS experiment: detection of particles created by antimatter-matter annihilation

The AEgIS researchers postulate that antimatter will be deflected down by gravity – but it may 'fall' up

Photographic-emulsion detectors have a long and successful history, Ariga explained, having been successfully employed as far back as French physicist Antoine Henri Becquerel's discovery of natural radioactivity in 1896. The 3D nature of the AEgIS experiment, however, coupled with the high resolution of the photographic-emulsion detectors used, creates data sets on the order of 10 terabytes for a 50 micron–thick, 10-centimeter-by-10-centimeter 3D target.

"And usually we use more than one square meter of detectors," he said, "and it's quite a lot of data – usually it exceeds a petabyte."

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
prev story


Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
The total economic impact of Druva inSync
Examining the ROI enterprises may realize by implementing inSync, as they look to improve backup and recovery of endpoint data in a cost-effective manner.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.