Feeds

'Software amplifier' boosts quantum signals

Preserving entanglement for better comms

Next gen security for virtualised datacentres

Even in quantum communications, adjusting the parameters of Shannon's Theorem can help improve reach and range. A group of Australian National University (ANU) researchers has found a way to extend the reach of quantum communications by improving the signal-to-noise ratio of quantum systems.

Their work, published in Nature Photonics (abstract here), offers a protocol for noiseless amplification of quantum systems.

According to Professor Ping Koy Lam of the ANU, who spoke to The Register, the protocol developed by his team helps circumvent the fragility of entanglement, the property of quantum systems that's important for quantum communications, computing, and key distribution.

The record for preserving correlation, even in the low-noise environment of a fibre-optic cable, is about 260 km, Professor Lam explained, and even that's a remarkable achievement given how difficult it is to preserve entanglement. With noiseless amplification of the quantum system, “we hope to achieve perhaps twice that range of the channel.”

The ANU protocol is based on what Professor Lam described as “probabilistic amplification”. The problem with amplifying quantum objects is that you introduce a noise penalty as well, and noise destroys entanglement. This was outlined in a key 1982 paper by Carlton Caves.

ANU student with quantum comms apparatus

PhD student Helen Chrzanowski, one of Professor Lam's team,

with the ANU quantum communications setup.

Image: Australian National University

However, Professor Lam said, “you can circumvent this if you're prepared to sacrifice most of your data. For example, we might run the experiment 1,000 times, knowing that once out of that 1,000, the system will give you noiseless amplification.”

The ANU protocol implements a filter function, he said, and with the right filter shape, “you get the right statistical function – what you get out of the system is a probabilistic noiseless amplified signal”.

Rather than being implemented as a midpoint regeneration-style amplifier, the ANU probabilistic noiseless amplifier is implemented at endpoints.

And since the ANU solution is an algorithm rather than a particular physical setup, the results should be readily reproducible by other researchers with suitable environments. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
LOHAN Kickstarter push breaks TWELVE THOUSAND POUNDS
That's right, folks, you've stumped up OVER 9,000 beer tokens - and counting
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.