Feeds

Soliton makes its way across silicon in CUDOS experiment

'Intricate' research paves way to glass-free on-chip interconnect

The smart choice: opportunity from uncertainty

On-chip photonic interconnects are a step closer, with a successful demonstration of soliton compression in silicon from Australia's CUDOS research centre.

In a Nature Communications report, a team from CUDOS demonstrates that solitons can be both observed and harnessed in silicon-based photonic systems. Solitons in fibre optic systems, for example, have good stability over long distances.

CUDOS director Professor Ben Eggleton told The Register that although solitons are “well established and well exploited” in many fields, solitons on silicon pose particular problems. “Silicon causes non-linearity, which allows the soliton to not disperse,” he explained.

However, light interacts with silicon causing the release of electrons – and those electrons absorb light. So a challenge in making practical use of solitons in silicon-based photonics is to have them propagate across silicon without changing shape.

The second fundamental aspect of the research, Professor Eggleton said, is that the research team, led by Andrea Blanco-Redondo and Dr Chad Husko, were able to shape the light pulses in silicon.

The CUDOS silicon waveguide

The silicon waveguide CUDOS developed

to demonstrate soliton compression

“Compressing the pulse is the foundation of all photonic communication,” he said, because that enables systems in which different pulse shapes can represent ones and zeroes.

“This experiment is laying down the foundation, by elucidating the non-linear dynamics” of soliton behaviour in silicon systems, he said, describing the work as “exquisite and intricate”.

While the CUDOS experiment only worked at a few hundred bits per second, Eggleton said, the picosecond pulse width the researchers worked with means that communication rates of 100 Gbps are feasible.

On-chip photonic interconnect is keenly researched, because using light for the interconnect reduces the amount of heat a chip has to dissipate.

The CUDOS work has been published in Nature Communications. The full paper is here. ®

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.