Feeds

Soliton makes its way across silicon in CUDOS experiment

'Intricate' research paves way to glass-free on-chip interconnect

Secure remote control for conventional and virtual desktops

On-chip photonic interconnects are a step closer, with a successful demonstration of soliton compression in silicon from Australia's CUDOS research centre.

In a Nature Communications report, a team from CUDOS demonstrates that solitons can be both observed and harnessed in silicon-based photonic systems. Solitons in fibre optic systems, for example, have good stability over long distances.

CUDOS director Professor Ben Eggleton told The Register that although solitons are “well established and well exploited” in many fields, solitons on silicon pose particular problems. “Silicon causes non-linearity, which allows the soliton to not disperse,” he explained.

However, light interacts with silicon causing the release of electrons – and those electrons absorb light. So a challenge in making practical use of solitons in silicon-based photonics is to have them propagate across silicon without changing shape.

The second fundamental aspect of the research, Professor Eggleton said, is that the research team, led by Andrea Blanco-Redondo and Dr Chad Husko, were able to shape the light pulses in silicon.

The CUDOS silicon waveguide

The silicon waveguide CUDOS developed

to demonstrate soliton compression

“Compressing the pulse is the foundation of all photonic communication,” he said, because that enables systems in which different pulse shapes can represent ones and zeroes.

“This experiment is laying down the foundation, by elucidating the non-linear dynamics” of soliton behaviour in silicon systems, he said, describing the work as “exquisite and intricate”.

While the CUDOS experiment only worked at a few hundred bits per second, Eggleton said, the picosecond pulse width the researchers worked with means that communication rates of 100 Gbps are feasible.

On-chip photonic interconnect is keenly researched, because using light for the interconnect reduces the amount of heat a chip has to dissipate.

The CUDOS work has been published in Nature Communications. The full paper is here. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
India's MOM Mars mission makes final course correction
Mangalyaan probe will feel the burn of orbital insertion on September 24th
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.