Feeds

Dr Hurricane unleashes FUSION POWER at Livermore nuke lab

More power out of fuel than put in - but a long way to go

Secure remote control for conventional and virtual desktops

Scientists in California have made a major breakthrough in fusion power research, but the path to unlimited clean energy remains long and difficult.

The scientists described the significant result – which was recorded last year at the National Ignition Facility in Lawrence Livermore National Laboratory – in a paper published in Nature on Wednesday.

"The two notable parts that we report on are getting more fusion energy out of the fusion fuel than was deposited into the fusion fuel, and the other component of that is seeing this non-linear feedback process that we call bootstrapping where the alpha particles that come out of the helium reaction start leaving a significant amount of their energy behind causing the reaction to accelerate and amplify the output – it's nearly a doubling of the output due to the alpha particles," researcher Omar Hurricane tells El Reg. "They are important scientific steps on the way to pushing the fusion further."

In the 'Fuel gain exceeding unity in an inertially confined fusion implosion' paper the scientists describe how they were able to generate more energy from the ensuing reaction than that which was put into it via a laser.

"These experiments show an order-of-magnitude improvement in yield performance over past deuterium–tritium implosion experiments," they write.

For the experiment, the scientists fired the National Ignition Facility's laser at the target with an energy of two megajoules, though only at best 17 kilojoules reached the pellet of deuterium and tritium fuel.

Why did so little energy reach the actual pellet? "We need to make it dense and hot at the same time, the way these experiments work is we give up energy as the experiment proceeds and trade it away to get very high pressures," Hurricane explains.

"Right now what we're focused on is getting the central pressure at the final state of our implosion even higher, right now the experiments are creating pressures of around 150 billion atmospheres, our goal is more or less to double that. If we can double that - maybe a little bit more than doubling - we can start to get close to the conditions to ignite the fuel."

The researchers, though, are a long way away from attaining a break-even reaction; an ongoing fusion reaction where the energy being output is greater than the power needed for the igniting laser.

"In the sense where we are with this is we've assembled the stick of dynamite with the fuse and can light the fuse – all we need to do now is get that fuse to light all the way down to the stick of dynamite," Hurricane explained.

There are currently two main approaches to attaining a stable, ongoing reaction: the approach taken by the National Ignition Facility which sees an immensely high powered laser used to create vast pressures for a short time period and kickstart a reaction, and that taken by the 'Tokamak' approach.

A 'Tokamak' is, in simplified terms, a doughnut-shaped chamber that uses a magnetic field to confine and compress a plasma until it reaches fusion.

Countries around the world are in the process of building the mammoth 'ITER' facility in the South of France that will house a huge Tokamak along with other advanced gadgetry to create a long-term sustainable fusion reaction, and pave the way for the building of practical plants.

"Both approaches are credible," Hurricane says. "The magnetic fusion approach is almost the opposite [of the NIF] – trying to go for lower pressures but for longer times. This is such a hard problem it makes sense for multiple approaches."

Both approaches face the same problem: turbulence. The trickiest part of maintaining an ongoing fusion reaction is controlling the immense energies and forcing them into a stable configuration.

The key work for researchers at the National Ignition Facility, and ITER, will be in learning to "tamp down" this turbulence, Hurricane explains.

We imagine that champagne corks will be popping at the National Ignition Facility tonight – though hopefully not within the rather expensive fusion chamber.

"Rather than having another frustrating result where things aren't going the way we want things are starting to go the way we want," Hurricane said. "This is a really nice scientific step." ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
SCREW YOU, Russia! NASA lobs $6.8bn at Boeing AND SpaceX to run space station taxis
Musk charging nearly half as much as Boeing for crew trips
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
India's MOM Mars mission makes final course correction
Mangalyaan probe will feel the burn of orbital insertion on September 24th
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.