Feeds

Rise of the (tiny) machines: US boffins make nanomotor breakthrough

Researchers use ultrasonic warbles to make gold motors dance

Remote control for virtualized desktops

US researchers have controlled nanomotors embedded within cells, a breakthrough that gives scientists a new tool for probing the inner structure of cells, and opens up a new front in research for futuristic cancer treatments.

The result was announced by Penn State researchers in a paper published in the journal Angewandte Chemie International Edition on Monday. The researchers claim that their ultrasonic approach gave the motors advantages over other technologies.

"As these nanomotors move around and bump into structures inside the cells, the live cells show internal mechanical responses that no one has seen before," Penn State professor and coauthor of the paper Tom Mallouk, said in a canned statement.

"We might be able to use nanomotors to treat cancer and other diseases by mechanically manipulating cells from the inside. Nanomotors could perform intracellular surgery and deliver drugs noninvasively to living tissues."

Nanomotors have been studied for many years, but this experiment marks the first time that they have been looked at within living human cells, Mallouk said.

For the experiment, the researchers used acoustically powered gold nanorods as motors, and combined them with HeLa cervical cancer cells by incubating them together for 24 hours in a phosphate buffer saline solution.

The motors were three micrometers long and 300 nanometers in diameter – about 270 times smaller than the thickness of a human hair.

"Cell viability tests indicated that most of the HeLa cells remained alive after uptake of nanowires and ultrasonic agitation," the researchers write in the paper.

Other schemes have tried to develop nanoparticles, magnetic nanowires, and magnetic beads as ways of adding diagnostic or manipulation properties to cells, but these all require power from diffusion or convection, or must be controlled as a group – a drawback for detailed work.

Penn State Nanomotor

The Penn State approach, by contrast, "may have advantages," the researchers say, "because acoustic motors autonomously convert local acoustic energy into mechanical motion, each motor can move in a different direction and at its own speed."

During the experiment, the researchers noticed that some cells absorbed more rods than others – this could be due to uneven distribution during the mixing period, or differences between HeLa cells – and that acoustic motors moved more slowly inside cells than outside.

"The introduction of synthetic nanomotors into living cells thus opens a new door to studying sub-cellular components and the response of cells to internal mechanical forces. In addition, functionalities such as sensing, molecule delivery, or photothermal excitation can be added to rod-shaped motors, enabling them to carry out different operations directly inside cells that may be interesting for biomedical applications," the researchers wrote. ®

Internet Security Threat Report 2014

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
The total economic impact of Druva inSync
Examining the ROI enterprises may realize by implementing inSync, as they look to improve backup and recovery of endpoint data in a cost-effective manner.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Mitigating web security risk with SSL certificates
Web-based systems are essential tools for running business processes and delivering services to customers.