Feeds

Boffins say D-Wave machine could be a classic*

*Classical computer, that is

5 things you didn’t know about cloud backup

First, the world thought that D-Wave hadn't built a quantum computer; then, it thought there was a quantum computer in the box; next, there was disappointment that the D-Wave machine didn't speed things up (but might still be quantum); and now, it starts to look like it's not quantum after all.

In the latest instalment in the duelling papers battle at Arxiv, researchers from IBM and UC Berkeley (including quantum computing pioneer Umesh Vazirani) tip-toe the fine line between academic debunking and professional courtesy: rather than saying outright “this is not a quantum computer” (which is how the results are being headlined in some quarters), they state with more restraint that “classical models for the D-Wave machine are not ruled out.”

To put the latest experiment in context: last year, a paper authored by Sergio Boixo of the University of Southern California, Matthias Troyer of ETH Zurich and others concluded the D-Wave computer performs quantum annealing – in other words, in a limited sense, it is a quantum computer.

They reached this conclusion by correlating the D-Wave machine's input-output behaviour with a quantum model called simulated quantum annealing, and comparing that to the predictions of two classical computing models, simulated annealing and classical spin dynamics. Since there was a poor correlation between the D-Wave and the classical models, and a good correlation with the predictions of the quantum models, the Boixo/Troyer paper decided that “the device performs quantum annealing.”

If The Register understands the new paper correctly, there's a problem with this conclusion: what if there are other classical models that could predict the D-Wave machine's behaviour, without resorting to quantum-level explanations.

That's what the UC Berkeley / IBM team (lead author Seung Woo Shin) sought to explore, starting with the basis of the Boixo/Troyer work: “the core of the argument [that D-Wave has built a quantum computer – El Reg] is based on the finding that the D-Wave machine and simulated quantum annealing generally found the same set of instances to be 'hard' and the same set of instances to be 'easy.'”

The new experiment puts forward a different classical model as the basis of comparison: it “replaces each spin in the D-Wave machine with a magnet pointing in some direction in the XZ plane. Each magnet is subject to both an external magnetic field as well as dipole-dipole couplings due to interactions with nearest neighbours on the so-called Chimera graph,” the paper states.

“The external magnetic field is attenuated at the same rate as in [the Boixo/Troyer paper], while the couplings between magnets also follow the schedule [from the same paper. We consider the input-output behaviour of this model on the same set of one thousand inputs.”

Their conclusion is that their classical model achieves “as good or better correlation with the D-Wave machine's input-output behaviour than simulated quantum annealing does”.

The Register notes that Matthias Troyer provided a suggestion to the Berkeley / IBM team, which they followed: a direct comparison between their model and simulated quantum annealing, which also revealed a strong correlation (and thus a demonstration of the validity of the Berkely / IBM model.

“One way to view this result is that our model is the classical analogue of a mean-field approximation to simulated quantum annealing, and that for the set of problems solved by D-Wave One, this approximation is very accurate,” they write.

Of course, the problem with all academic analyses of the D-Wave computer is that all any researcher can test is the input-output behaviour of the machine, since the company keeps its internals a closely-guarded secret. ®

Build a business case: developing custom apps

More from The Register

next story
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
TRIANGULAR orbits will help Rosetta to get up close with Comet 67P
Probe will be just 10km from Space Duck in October
ANU boffins demo 'tractor beam' in water
The current state of the art, apparently
China to test recoverable moon orbiter
I'll have some rocks and a moon cheese pizza please, home delivery
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
Why your mum was WRONG about whiffy tattooed people
They're a future source of RENEWABLE ENERGY
Vulture 2 spaceplane autopilot brain surgery a total success
LOHAN slips into some sexy bespoke mission parameters
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.