Feeds

Japanese quantum boffins 'may have the key to TELEPORTATION'

Energy-moving experiment 'cheats' quantum theory with startlingly lateral idea

Build a business case: developing custom apps

Don't get too excited, the world's not about to get Star Trek-style transporters. However, if a quantum communications theory formulated by three Tohoku University boffins can stand the test of experiment, they could break the distance limitations that currently constrain quantum communications.

At this point, the exercise gets a little mind-bending, even in the abstract of the paper by Masahiro Hotta, Jiro Matsumoto and Go Yusa from Tohoku's Department of Physics: “We prove that introducing squeezed vacuum states with local vacuum regions between the two protocol users overcomes this limitation, allowing energy teleportation over practical distances”.

“Squeezed states” describe a way to cheat quantum theory just a little bit: you reduce the uncertainty of one parameter in the quantum system by increasing the uncertainty of another parameter. Think of (for example) light. Light has two polarisation states – “squeezing” would allow measurements of the horizontal polarisation state to be more accurate, so long as you don't mind more uncertainty within the vertical polarisation state.

One practical example of squeezing was explained to The Register here, where it was being used to improve the sensitivity of a gravity wave observatory.

So, what's this got to do with quantum communication? It boils down to physicists' ability to demonstrate Quantum Energy Teleportation (QET) over a distance, since as the authors write: “despite … experimental proposals for various physical systems, a strong distance limitation has hampered experimental verification”.

Squeezed Quantum States for Teleportation

Squeezing the quantum state to get better measurements of teleportation

The Tokohu paper proposes a QET protocol that uses “a squeezed vacuum state” between two ends of the communication: “The spatial correlation of the quantum fluctuations with zero energy is maintained, even if the distance between the sender and receiver of QET is very large,” they write. ®

Securing Web Applications Made Simple and Scalable

More from The Register

next story
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.