Feeds

Boffins measure 27 quantum states of light

Just how dead is Schrödinger's cat?

Bridging the IT gap between rising business demands and ageing tools

One of the key tenets of quantum mechanics, that it's impossible to measure a quantum state without collapsing the wave function, has taken an arrow to the knee, courtesy of a University of Rochester experiment.

Building on work carried out in 2011 at the National Research Council of Canada, the UoR researchers say they've directly measured a 27-dimensional quantum state without destroying it.

The UoR researchers worked with the orbital angular momentum state of a light beam. OAM refers to the “twistedness” of the beam, and since it exists as a quantum state, its various possible states exist simultaneously in superposition.

The traditional view of quantum mechanics, expressed in the famous (but famously misunderstood) “Schrödinger's cat” thought experiment, is that observing the quantum states will collapse the wave function. You can only view the cat as alive or dead, not both. In the case of the light beam, taking a “strong” measurement of the beam will collapse the wave function and yield a single value for its orbital angular momentum.

University of Rochester's quantum characterisation experiment

Schematic of the University of Rochester quantum state characterisation experiment

Image: M. Malik

To characterise all of the states that existed before they collapse, the university explains, would usually require a tedious process called quantum tomography (if you don't mind Wikipedia, it's explained here). The researchers describe quantum tomography as being like creating a 3D image using a large number of 2D images.

In their “direct measurement” experiment, the UoR researchers say they've sped up the process of characterising the quantum system of the light beam. They do this by taking “weak” measurements followed by “strong” measurements.

The weak measurements disturb the quantum system without making it collapse: each weak measurement is of low enough quality that it only yields partial information about the quantum state. After enough weak measurements, the researchers say, they can build up a statement of the probability of the system's different states – in other words, is the cat in Schrödinger's box more likely to be alive or dead?

The strong measurement then collapses the wave function of a second variable.

In other words, in The Register's understanding (the author will accept correction on this point), the experiment essentially builds a dataset based on repeated weak-then-strong measurements, that tabulates:

  • What were the possible values for this quantity in the weak measurement, before the wave function collapsed?
  • What value was observed in the strong measurement?

This yields a plot from which the superpositions can be inferred much more quickly than using quantum tomography. To quote the university press release:

“This sequence of weak and strong measurements is then repeated for multiple identically prepared quantum systems, until the wave function is known with the required precision.”

The previous Canadian research performed direct measurement on the polarisation state of light, but in the Rochester work, the researchers claim they're the first to use direct measurement at such a high level of dimensionality.

The researchers say that fast characterisation of high-dimensional quantum states can help improve quantum-based secure communications systems. ®

Mobile application security vulnerability report

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Microsoft's anti-bug breakthrough: Wire devs to BRAIN SCANNERS
Clippy: It looks your hands are shaking, are you sure you want to commit this code?
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.