Feeds

Boffins hampered by the ampere hanker for a quantum answer

What's new in current affairs – a better unit for the flow of electricity

Application security programs and practises

The search for a new ampere standard has moved a little further on, with a paper claiming that accurate quantum-level electron generation is feasible.

Hans Schumacher of the Federal Institute of Physical and Technical Affairs (PTB) in Braunschweig, Germany, and a group of collaborators, say they have been able to demonstrate “quantized-current generation with in-situ detection of tunnelling errors at low frequencies”.

If the experiment (posted to Arxiv, here) can be shown to be repeatable, and if the apparatus can be scaled up, the authors believe they have a mechanism by which the ampere can be redefined in terms of the charge on an electron.

As Nature explains, the ampere is a difficult unit to get a hold on: the current today's definition – “the amount of charge flowing per second through two infinitely long wires one metre apart, such that the wires attract each other with a force of 2 × 10−7 newtons per metre of length” – is “based on a thought experiment that can at best be approximated in the laboratory”.

A quantum-based standard would be preferable, but it's proved elusive because counting individual electrons is prone to error. As the authors note in their paper, “the reliability of any single-electron current sources generating a nominally quantised output current … is eventually limited by the stochastic nature of the underlying quantum mechanical tunnelling process.”

As Vulture South understands things, it's easy to fire billions of electrons – but that leaves the quantum-level measurement subject to statistical errors, something that quantum metrologists don't like. On the other hand, it's hard to scale up a mechanism that can reliably fire single electrons, so that you get enough for one ampere; and the paths single electrons will take are unpredictable, causing errors that have to be corrected.

Enter the PTB experiment. At the moment, it still suffers the limitations of low-frequency single-electron pumping, since it only delivered a few dozen electrons. The aim of this experiment was to improve the detection side: it's still subject to probabilistic errors, but the researchers say they have improved detection sensitivity by “more than an order of magnitude”.

The device they created is below.

Quantum amp device

Image: Hans Schumacher et al

P1 – P3 are the three single electron pumps, separated by two charge nodes with metallic gates defining the quantum dots in the channel. D1 and D2 are the single-electron transistor detectors.

By providing the basis for an experiment that is scalable, the researchers hope to fulfil a key requirement of any SI standard – that it can be reproduced in any lab in the world, so that national test laboratories would end up with ammeters whose measurements agree. ®

Build a business case: developing custom apps

More from The Register

next story
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Securing Web Applications Made Simple and Scalable
Learn how automated security testing can provide a simple and scalable way to protect your web applications.