Feeds

OHM MY GOD! Move over graphene, here comes '100% PERFECT' stanene

Resistance-free conductivity at room temperatures and above

A new approach to endpoint data protection

A US, Chinese, and German research team has come up with a new material dubbed "stanene" that could – theoretically, at least – conduct electricity with "100 percent efficiency" at temperatures at which computer chips operate, raising the tantalizing possibility of highly efficient future chippery.

"Stanene could increase the speed and lower the power needs of future generations of computer chips, if our prediction is confirmed by experiments that are underway in several laboratories around the world," said research team leader Shoucheng Zhang, physics professor at Stanford University.

Zhang and his team of theoretical physicists discuss their findings in a paper snappily entitled "Large-Gap Quantum Spin Hall Insulators in Tin Films", recently published in the American Physical Society's Physical Review Letters.

The trick to stanene is that it is of a class of materials called "topological insulators", which conduct electricity only along the edges or surfaces of their structures, and not through their interiors. When these structures are a mere one atom thick, that electrical conduction can be 100 per cent efficient due to "complex interactions between the electrons and nuclei of heavy atoms in the materials," a Stanford press release explains.

In the case of stanene, the heavy atom in question is tin, which weighs in at 118.71 atomic mass units. Zhang and his team calculate that tin alone, fabricated in a one-atom layer, could be a topological insulator at around room temperature, and that by adding fluorine atoms to the structure, the temperature could be raised to at least the boiling point of water – 100°C or 212°F.

Stanene lattice structure with tin and fluorine atoms

Adding fluorine atoms (yellow) to a single layer of tin atoms (grey) should allow stanene to conduct electricity perfectly along its edges (blue and red arrows) at temperatures up to 100°C or 212°F

According to Zhang, if stanene pans out, it could first be used to connect various and sundry areas of a microprocessor. Conductivity would still be limited where the stanene leaves off and conventional microprocessor circuitry is reached, but there would still be an appreciable savings in power and a reduction in heat.

As manufacturing processes are perfected and chip designs are refined to take advantage of stanene's properties, however, the still-theoretical material might revolutionize the microprocessor industry.

"Eventually," Stanford prof Zhang said, "we can imagine stanene being used for many more circuit structures, including replacing silicon in the hearts of transistors. Someday we might even call this area Tin Valley rather than Silicon Valley."

Bootnote

Zhang and his team say that they named stanene by combining stannum, the Latin word for tin, and "ene", borrowed from that other much-touted one atom–thick wonder material, graphene. We also suspect that they added "ene" simply because, well, it's the materials science suffix du jour.

The Essential Guide to IT Transformation

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Brit amateur payload set to complete full circle around PLANET EARTH
Ultralight solar radio tracker in glorious 25,000km almost-space odyssey
Boffins spot weirder quantum capers as neutrons take the high road, spin takes the low
Cheshire cat effect see neutrons and their properties walk different paths
NASA Mars rover FINALLY equals 1973 Soviet benchmark
Yet to surpass ancient Greek one, however
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
prev story

Whitepapers

7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?