Feeds

Hey, boffins, Google wants you to train your AI on VIDEO GAMES

'Who knew a constant diet of violence would lead to such a cruel robot army?'

Next gen security for virtualised datacentres

"Honestly, we never thought feeding our nascent artificial intelligence systems with hours and hours of simulated violence could lead to anything bad. It's really a huge surprise!"

At least, that's what we imagine researchers will be saying years from now as they shelter from the orbiting cannons operated by their uncaring machine-gods, given Google's release on Tuesday of a huge data set to help boffins train their machine learning models.

We're many decades away from any true form of independent machine-based intelligence, so the dataset should be welcomed rather than viewed with anxiety, as it gives academics a batch of solid, well understood and formatted data to feed their models.

The dataset comprises of over 100,000 feature vectors extracted from public YouTube videos of people streaming games, Google said, and is stored under the name YouTube Multiview Video Games Data.

Just as Google's own image recognition tech, for instance, has got uncannily good at recognizing paper shredders after being fed a steady diet of images uploaded into the Chocolate Factory, this dataset may help academics tweak models that need to process multiple inputs simultaneously, or rapidly understand an inscrutable environment.

It contains over 120,000 individual videos, each of which is described by up to 3 high level feature families. Each video can be labelled with one of 31 labels. 30 of these correspond to popular video games which were picked at random from a list of the top 100 games on YouTube as of 2012.

"The dataset should be useful particularly for research on multiview (multimodal) learning, including multiview clustering and/or supervised learning, co-training, early/late fusion, and ensemble techniques," the company wrote. "Neither the identity of the videos nor the class labels (video-game titles) are released."

One of the most problematic parts of training machine learning models is feeding them the right data stored in a predictable format.

"Each feature family complements others in providing predictive signals to accomplish a prediction or classification task, for example, in automatically classifying videos into subject areas," explains Google senior software engineer Omid Madani in a separate blog post.

With this data release, Google is sharing some of the crumbs from its heaving table of data with the wider research community, and will likely help researchers trying to train models to spot not only distinct features within videos, but forge associations as well.

For that reason we reckon that the team running the Never Ending Image Learner (NEIL) over at Carnegie Mellon University may find this useful. NEIL's purpose in life is to ingest visual data from Google and figure out associations, such as that cars can sometimes be found on top of roads, and others.

Once it gains the capability to look at video data as well, a quick load in of this data set may help it figure out that aggressors should be sworn at and shot, or purpose that gold coins must be found, or that damsels should always be saved. Actually, that doesn't sound like such a bad way to live! ®

The essential guide to IT transformation

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Object storage bods Exablox: RAID is dead, baby. RAID is dead
Bring your own disks to its object appliances
Nimble's latest mutants GORGE themselves on unlucky forerunners
Crossing Sandy Bridges without stopping for breath
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
BYOD's dark side: Data protection
An endpoint data protection solution that adds value to the user and the organization so it can protect itself from data loss as well as leverage corporate data.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?