Feeds

Nanowire laser is a GaAs, GaAs, GaAs (with a bit of arsenic)

Boffins demo room-temp nano-lasers to help marry optics and electronics

Beginner's guide to SSL certificates

A group of researchers at the Australian National University (ANU) is showing off nanowire-based lasers, as part of the microelectronics world's ongoing search for the best way to integrate electronics and photonics.

The research, described in a Nature Photonics paper (abstract) led by Professor Chennupati Jagadish, demonstrates a process for growing gallium arsenide nanowires that act as lasers at room temperature.

Or, as the researchers put it in the abstract: “we demonstrate room-temperature lasing in core–shell–cap GaAs/AlGaAs/GaAs nanowires by properly designing the Fabry–Pérot cavity, optimising the material quality and minimising surface recombination”.

As many El Reg readers know, a conventional laser sets up a resonance in light by pumping a material to release light inside a mirrored cavity – and as ANU student Dhruv Saxena explains, even at small scales (like LED lasers), building lasers involves a number of processing steps.

In the ANU scheme, a GaAs-based nanowire captures light and reflect it along its axis. As the ANU release states, the GaAs also provides the amplification medium – and that means the entire laser can exist in a structure that's just a few billionths of a metre in diameter.

The ANU's Nanowire GaAs laser

Nanowire lasers on substrate.

Source: ANU

Making the laser small is a step along the process of making it easy to integrate optics and electronics, an important goal in keeping Moore's Law rolling along: anywhere that light can replace electrons to communicate, a little bit of power (and therefore on-chip heat) is saved.

The other aspect of the work that ANU's pleased about is that it's a fairly straightforward manufacturing process. The nanowires are grown as crystals on a substrate scattered with gold particles that seed the growth.

“We provide gases containing gallium and arsenic and raise the temperature of the substrate up to 750°C. At these temperatures the elements react and nanowires start growing”, said Dr Sudha Mokkapati, who co-authored the paper with Saxena. ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
HUMAN DNA 'will be FOUND ON MOON' – rockin' boffin Brian Cox
Crowdfund plan to stimulate Blighty's space programme
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Choosing a cloud hosting partner with confidence
Download Choosing a Cloud Hosting Provider with Confidence to learn more about cloud computing - the new opportunities and new security challenges.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.