Feeds

Nanowire laser is a GaAs, GaAs, GaAs (with a bit of arsenic)

Boffins demo room-temp nano-lasers to help marry optics and electronics

Beginner's guide to SSL certificates

A group of researchers at the Australian National University (ANU) is showing off nanowire-based lasers, as part of the microelectronics world's ongoing search for the best way to integrate electronics and photonics.

The research, described in a Nature Photonics paper (abstract) led by Professor Chennupati Jagadish, demonstrates a process for growing gallium arsenide nanowires that act as lasers at room temperature.

Or, as the researchers put it in the abstract: “we demonstrate room-temperature lasing in core–shell–cap GaAs/AlGaAs/GaAs nanowires by properly designing the Fabry–Pérot cavity, optimising the material quality and minimising surface recombination”.

As many El Reg readers know, a conventional laser sets up a resonance in light by pumping a material to release light inside a mirrored cavity – and as ANU student Dhruv Saxena explains, even at small scales (like LED lasers), building lasers involves a number of processing steps.

In the ANU scheme, a GaAs-based nanowire captures light and reflect it along its axis. As the ANU release states, the GaAs also provides the amplification medium – and that means the entire laser can exist in a structure that's just a few billionths of a metre in diameter.

The ANU's Nanowire GaAs laser

Nanowire lasers on substrate.

Source: ANU

Making the laser small is a step along the process of making it easy to integrate optics and electronics, an important goal in keeping Moore's Law rolling along: anywhere that light can replace electrons to communicate, a little bit of power (and therefore on-chip heat) is saved.

The other aspect of the work that ANU's pleased about is that it's a fairly straightforward manufacturing process. The nanowires are grown as crystals on a substrate scattered with gold particles that seed the growth.

“We provide gases containing gallium and arsenic and raise the temperature of the substrate up to 750°C. At these temperatures the elements react and nanowires start growing”, said Dr Sudha Mokkapati, who co-authored the paper with Saxena. ®

Remote control for virtualized desktops

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
NASA launches new climate model at SC14
75 days of supercomputing later ...
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Driving business with continuous operational intelligence
Introducing an innovative approach offered by ExtraHop for producing continuous operational intelligence.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?