Feeds

Nanowire laser is a GaAs, GaAs, GaAs (with a bit of arsenic)

Boffins demo room-temp nano-lasers to help marry optics and electronics

Business security measures using SSL

A group of researchers at the Australian National University (ANU) is showing off nanowire-based lasers, as part of the microelectronics world's ongoing search for the best way to integrate electronics and photonics.

The research, described in a Nature Photonics paper (abstract) led by Professor Chennupati Jagadish, demonstrates a process for growing gallium arsenide nanowires that act as lasers at room temperature.

Or, as the researchers put it in the abstract: “we demonstrate room-temperature lasing in core–shell–cap GaAs/AlGaAs/GaAs nanowires by properly designing the Fabry–Pérot cavity, optimising the material quality and minimising surface recombination”.

As many El Reg readers know, a conventional laser sets up a resonance in light by pumping a material to release light inside a mirrored cavity – and as ANU student Dhruv Saxena explains, even at small scales (like LED lasers), building lasers involves a number of processing steps.

In the ANU scheme, a GaAs-based nanowire captures light and reflect it along its axis. As the ANU release states, the GaAs also provides the amplification medium – and that means the entire laser can exist in a structure that's just a few billionths of a metre in diameter.

The ANU's Nanowire GaAs laser

Nanowire lasers on substrate.

Source: ANU

Making the laser small is a step along the process of making it easy to integrate optics and electronics, an important goal in keeping Moore's Law rolling along: anywhere that light can replace electrons to communicate, a little bit of power (and therefore on-chip heat) is saved.

The other aspect of the work that ANU's pleased about is that it's a fairly straightforward manufacturing process. The nanowires are grown as crystals on a substrate scattered with gold particles that seed the growth.

“We provide gases containing gallium and arsenic and raise the temperature of the substrate up to 750°C. At these temperatures the elements react and nanowires start growing”, said Dr Sudha Mokkapati, who co-authored the paper with Saxena. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Bacon-related medical breakthrough wins Ig Nobel prize
Is there ANYTHING cured pork can't do?
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.
Protecting users from Firesheep and other Sidejacking attacks with SSL
Discussing the vulnerabilities inherent in Wi-Fi networks, and how using TLS/SSL for your entire site will assure security.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.