Feeds

JESUS battery HEALS itself - might make electric cars more practical

Stanford boffins' remarkable cladding produced Miracle-'lectrode

The smart choice: opportunity from uncertainty

Stanford researchers say they have cracked a key problem holding back lithium-ion batteries: which might make the next generation of phones, e-cars and other battery powered equipment a whole lot better.

The issue the researchers were facing is that silicon - though an excellent substance from which to make a modern battery electrode, as it has a high capacity for absorbing and then releasing lithium ions during charging and discharging - swells up and contracts massively when so used. In fact a silicon electrode increases in size by no less than three times over and then returns to its original size duing a charge-discharge cycle, and this naturally tends to mean that it comes to bits in fairly short order.

This is a major underlying reason why li-ion batteries often have a fairly poor service life. That's not a crippling problem in a smartphone - even if it's an iPhone or similar, designed in such a way that it's hard to replace the battery, people tend to get a new phone quite often. But it is a big deal in a much more expensive electric car: while a lot of people change cars frequently, they expect them still to be in saleable condition when they've finished with them - without any need to replace the major component of the power train.

The general distrust felt by the motor industry regarding battery service life, based on many years of beta tests with small groups of vehicles, is one major reason why not very many battery cars are being made. Even Tesla Motors, the flagship firm for battery cars, has admitted in SEC filings that battery life may yet become a major problem for it as its cars age.

But now the Stanford boffins say they're on the track of a fix. They have developed an astronishingly strong and stretchy polymer which can be coated onto a silicon electrode in use. As cracks form, the coating "heals" them. Here's a vid of a balloon coated with the stuff being inflated and deflated, indicating just how stretchy it is:

Play Video

“Self-healing is very important for the survival and long lifetimes of animals and plants,” says Chao Wang, a postdoc researcher at Stanford. “We want to incorporate this feature into lithium ion batteries so they will have a long lifetime as well.”

Thus far, the silicon+gunge electrodes aren't ready for prime time: they can only do 100 charge cycles before starting to lose performance.

“That’s still quite a way from the goal of about 500 cycles for cell phones and 3,000 cycles for an electric vehicle,” admits Wang's colleague professor Yi Cui, “but the promise is there, and from all our data it looks like it’s working.”

So this technology isn't going to manufacturing yet, or perhaps ever if it can't be improved. But it is impressive enough that it has led to an article by the Stanford lab crew getting published in Nature Chemistry. And perhaps the amazing stretchy-stuff might have other uses, as well. ®

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.