Feeds

JESUS battery HEALS itself - might make electric cars more practical

Stanford boffins' remarkable cladding produced Miracle-'lectrode

Next gen security for virtualised datacentres

Stanford researchers say they have cracked a key problem holding back lithium-ion batteries: which might make the next generation of phones, e-cars and other battery powered equipment a whole lot better.

The issue the researchers were facing is that silicon - though an excellent substance from which to make a modern battery electrode, as it has a high capacity for absorbing and then releasing lithium ions during charging and discharging - swells up and contracts massively when so used. In fact a silicon electrode increases in size by no less than three times over and then returns to its original size duing a charge-discharge cycle, and this naturally tends to mean that it comes to bits in fairly short order.

This is a major underlying reason why li-ion batteries often have a fairly poor service life. That's not a crippling problem in a smartphone - even if it's an iPhone or similar, designed in such a way that it's hard to replace the battery, people tend to get a new phone quite often. But it is a big deal in a much more expensive electric car: while a lot of people change cars frequently, they expect them still to be in saleable condition when they've finished with them - without any need to replace the major component of the power train.

The general distrust felt by the motor industry regarding battery service life, based on many years of beta tests with small groups of vehicles, is one major reason why not very many battery cars are being made. Even Tesla Motors, the flagship firm for battery cars, has admitted in SEC filings that battery life may yet become a major problem for it as its cars age.

But now the Stanford boffins say they're on the track of a fix. They have developed an astronishingly strong and stretchy polymer which can be coated onto a silicon electrode in use. As cracks form, the coating "heals" them. Here's a vid of a balloon coated with the stuff being inflated and deflated, indicating just how stretchy it is:

Play Video

“Self-healing is very important for the survival and long lifetimes of animals and plants,” says Chao Wang, a postdoc researcher at Stanford. “We want to incorporate this feature into lithium ion batteries so they will have a long lifetime as well.”

Thus far, the silicon+gunge electrodes aren't ready for prime time: they can only do 100 charge cycles before starting to lose performance.

“That’s still quite a way from the goal of about 500 cycles for cell phones and 3,000 cycles for an electric vehicle,” admits Wang's colleague professor Yi Cui, “but the promise is there, and from all our data it looks like it’s working.”

So this technology isn't going to manufacturing yet, or perhaps ever if it can't be improved. But it is impressive enough that it has led to an article by the Stanford lab crew getting published in Nature Chemistry. And perhaps the amazing stretchy-stuff might have other uses, as well. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
LOHAN Kickstarter breaks NINETEEN THOUSAND of your EARTH POUNDS
That's right, OVER 9,000 beer tokens - and counting
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.