Feeds

Boffins hide supercapacitors on silicon chips

We don't need no STEEENKING BATTERIES

  • alert
  • submit to reddit

Secure remote control for conventional and virtual desktops

Scientists at Vanderbilt University have created a silicon-based supercapacitor they say could scale all the way from grid-level storage down to consumer electronics.

The reason they're trumpeting it as a breakthrough is that silicon, while abundant and with well-established fabrication techniques, doesn't work well in capacitors (or as the authors describe it in their paper, available in full at Nature, “double-layer charge storage”). Its highly reactive nature makes it much better as an anode in a metal-ion battery, they write; in supercapacitors “it reacts readily with some of chemicals in the electrolytes that provide the ions that store the electrical charge”.

As noted in this university press release: “Instead of storing energy in chemical reactions the way batteries do, “supercaps” store electricity by assembling ions on the surface of a porous material. As a result, they tend to charge and discharge in minutes, instead of hours, and operate for a few million cycles, instead of a few thousand cycles like batteries”.

To do this in silicon, the researchers used porous silicon, created by etching the surface of a silicon wafer. To combat the reactivity of the silicon, they then coated the surface with carbon, baked at between 600 and 700°C. The result was a graphene surface coating created at far lower than the 1400°C-plus temperatures used to create graphene.

Supercap power density

Graphene coating creates high-capacity supercap. Image: Cary Pint, Vanderbilt University

The graphene coating both stabilised the surface of the silicon, and allowed them to construct a supercapacitor with energy densities “over two orders of magnitude” better than uncoated porous silicon, “and significantly better than commercial supercapacitors.”

Research leader Cary Pint believes the approach could allow unused silicon on wafers to become the power source for devices like mobile phones. At a larger scale, supercapacitors could be built onto the back of solar cells, again using otherwise-unused silicon. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
TEEN RAMPAGE: Kids in iPhone 6 'Will it bend' YouTube 'prank'
iPhones bent in Norwich? As if the place wasn't weird enough
George Clooney, WikiLeaks' lawyer wife hand out burner phones to wedding guests
Day 4: 'News'-papers STILL rammed with Clooney nuptials
iPAD-FONDLING fanboi sparks SECURITY ALERT at Sydney airport
Breaches screening rules cos Apple SCREEN ROOLZ, ok?
Crouching tiger, FAST ASLEEP dragon: Smugglers can't shift iPhone 6s
China's grey market reports 'sluggish' sales of Apple mobe
Apple's new iPhone 6 vulnerable to last year's TouchID fingerprint hack
But unsophisticated thieves need not attempt this trick
The British Museum plonks digital bricks on world of Minecraft
Institution confirms it's cool with joining the blocky universe
How the FLAC do I tell MP3s from lossless audio?
Can you hear the difference? Can anyone?
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.