Feeds

Black hole boffins close in on gravity waves

Peering at pulsars produces promising pulling premise

Secure remote control for conventional and virtual desktops

While the world looks for ways to directly observe gravity waves, boffins at Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) say they've used information about the Einsteinian prediction to examine huge black holes in space.

In what they call a “new chapter in astronomy”, post-doctoral CSIRO fellow Dr Ryan Shannon and PhD student Vikram Ravi believe they've worked out the likely – and low – rate of background gravitational waves in the universe.

They've done this by examining data from the Parkes radio-telescope's PPTA (Parkes Pulsar Timing Array) project which, along with a previous CSIRO-Swinburne University collaboration provides 20 years' worth of pulsar timing data.

The timing of pulsar signals is extremely precise, the researchers say, but as a gravitational wave passes the pulsar's region, it would swell or shrink distances in that region, changing the timing of the pulse from Earth's point of view.

“The strength of the gravitational wave background depends on how often supermassive black holes spiral together and merge, how massive they are, and how far away they are. So if the background is low, that puts a limit on one or more of those factors,” CSIRO says in its media release.

As a result, the group believes one model used to explain supermassive black holes, galactic merger, should be discarded because it doesn't explain enough of the mass of black holes. The timing data will next be used to test other models of supermassive black hole growth.

Project leader, CSIRO's Dr George Hobbs, believes the timing data will one day allow direct detection of gravitational waves. “We haven't yet detected gravitational waves outright, but we're now into the right ballpark to do so,” he says.

He explained that combining pulsar-timing data from Parkes with that from other telescopes in Europe and the USA — a total of about 50 pulsars — should provide enough accuracy to detect gravitational waves “within ten years”.

The CSIRO video below illustrates spinning black holes generating gravitational waves. ®

Watch Video

Next gen security for virtualised datacentres

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up Big Data
Solving backup challenges and “protect everything from everywhere,” as we move into the era of big data management and the adoption of BYOD.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?