Feeds

Black hole boffins close in on gravity waves

Peering at pulsars produces promising pulling premise

5 things you didn’t know about cloud backup

While the world looks for ways to directly observe gravity waves, boffins at Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) say they've used information about the Einsteinian prediction to examine huge black holes in space.

In what they call a “new chapter in astronomy”, post-doctoral CSIRO fellow Dr Ryan Shannon and PhD student Vikram Ravi believe they've worked out the likely – and low – rate of background gravitational waves in the universe.

They've done this by examining data from the Parkes radio-telescope's PPTA (Parkes Pulsar Timing Array) project which, along with a previous CSIRO-Swinburne University collaboration provides 20 years' worth of pulsar timing data.

The timing of pulsar signals is extremely precise, the researchers say, but as a gravitational wave passes the pulsar's region, it would swell or shrink distances in that region, changing the timing of the pulse from Earth's point of view.

“The strength of the gravitational wave background depends on how often supermassive black holes spiral together and merge, how massive they are, and how far away they are. So if the background is low, that puts a limit on one or more of those factors,” CSIRO says in its media release.

As a result, the group believes one model used to explain supermassive black holes, galactic merger, should be discarded because it doesn't explain enough of the mass of black holes. The timing data will next be used to test other models of supermassive black hole growth.

Project leader, CSIRO's Dr George Hobbs, believes the timing data will one day allow direct detection of gravitational waves. “We haven't yet detected gravitational waves outright, but we're now into the right ballpark to do so,” he says.

He explained that combining pulsar-timing data from Parkes with that from other telescopes in Europe and the USA — a total of about 50 pulsars — should provide enough accuracy to detect gravitational waves “within ten years”.

The CSIRO video below illustrates spinning black holes generating gravitational waves. ®

Watch Video

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
Software bug caught Galileo sats in landslide, no escape from reality
Life had just begun, code error means Russia's gone and thrown it all away
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Gartner critical capabilities for enterprise endpoint backup
Learn why inSync received the highest overall rating from Druva and is the top choice for the mobile workforce.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.