Feeds

German researchers claim 100 Gbps wireless transmission record

Beat that, WiFi! And suck it up, fibre-to-the-premises fans

Security for virtualized datacentres

German researchers are claiming a world record, using a 237.5 GHz carrier and photonic mixing to achieve a 100 Gbps wireless link.

Don't throw away that WiFi kit just yet, however: while the reach, at 20 metres, is good enough to cover most household applications, the setup is a little bit exotic at this point in the system's development.

If commercialised, however, the researchers hope their 100 Gbps-capable link could act as a fibre extender in FTTN-style deployments, telling Phys.org “this technology represents an inexpensive and flexible alternative to optical fiber networks, whose extension can often not be justified from an economic point of view”.

The signals were generated using a photonic mixer from NTT Electronics, with custom-made receiver silicon built by the Fraunhofer Institute of Applied Solid State Physics.

Using photonics to generate the carrier wave is important, since it's difficult to work with electrical signals at such high frequencies. The photonic mixer took two light signals generated by lasers, with the difference between them resulting in the modulated 237.5 GHz electrical signal.

That was then fed to a conventional antenna for transmission to the receiver.

As the researchers describe the experiment in their Nature Photonics abstract: “a narrow-band terahertz carrier is photonically generated by mixing comb lines of a mode-locked laser in a uni-travelling-carrier photodiode. The uni-travelling-carrier photodiode output is then radiated over a beam-focusing antenna. The signal is received by a millimetre-wave monolithic integrated circuit comprising novel terahertz mixers and amplifiers.”

Professor Jürg Leuthold explained that the linearity and wide bandwidth of the photonic mixer makes it suitable for “advanced modulation formats with multiple amplitude and phase states”, meaning that it also provides good spectral efficiency.

KIT's fast wireless demonstration

KIT's demonstration setup, showing the receiver connected

to an oscilloscope. Image: KIT

The receiver used HEMT (high electron mobility transistor) technology able to operate between 200 and 280 GHz. Funded by Germany's Federal Ministry of Education and Research, the Millilink project could reach 1 Tbps using multiple transmission paths, according to experiment designer Professor Thomas Zwick from the Karlsruhe Institute of Technology. ®

Internet Security Threat Report 2014

More from The Register

next story
Crouching tiger, FAST ASLEEP dragon: Smugglers can't shift iPhone 6s
China's grey market reports 'sluggish' sales of Apple mobe
Sea-Me-We 5 construction starts
New sub cable to go live 2016
EE coughs to BROKEN data usage metrics BLUNDER that short-changes customers
Carrier apologises for 'inflated' measurements cockup
Comcast: Help, help, FCC. Netflix and pals are EXTORTIONISTS
The others guys are being mean so therefore ... monopoly all good, yeah?
Surprise: if you work from home you need the Internet
Buffer-rage sends Aussies out to experience road rage
EE buys 58 Phones 4u stores for £2.5m after picking over carcass
Operator says it will safeguard 359 jobs, plans lick of paint
MOST iPhone strokers SPURN iOS 8: iOS 7 'un-updatening' in 5...4...
Guess they don't like our battery-draining update?
prev story

Whitepapers

A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.