Feeds

New Terminator-style 'bots can self-assemble, leap, climb and SWARM

Creepy, limbless – MIT roboticists flywheel paves way for tiny, cube-shaped overlords

Secure remote control for conventional and virtual desktops

Rise of The Machines Roboticists at the Massachusetts Institute of Technology have devised a range of self-assembling cube robots, which have no external moving parts.

Youtube Video

Despite their lack of limbs, the M-Blocks can climb over and around each other, jump into the air, roll around and even move when hanging upside down - all thanks to an inner flywheel.

The flywheel can reach speeds of 20,000rpm and when the robot cube puts the brakes on, it gives itself angular momentum. Added to this are magnets on the edges and faces of the bots that allow them to attract to each other.

“It’s one of these things that the [modular-robotics] community has been trying to do for a long time,” said Daniela Rus, a professor of electrical engineering and computer science and director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). “We just needed a creative insight and somebody who was passionate enough to keep coming at it - despite being discouraged.”

Self-assembling cube-bots are already around, but those similar to M-Blocks tend to be more complex, with bits sticking out of them and a range of motors. These all allow the robots to be "statically stable", meaning that you can pause any of their movements at any time and they'll stay put. M-Blocks are different because they give up the ability to put things on pause.

"There’s a point in time when the cube is essentially flying through the air,” said postdoc Kyle Gilpin. “And you are depending on the magnets to bring it into alignment when it lands. That’s something that’s totally unique to this system.”

To compensate for the robots' instability, each edge of the cube has two cylindrical magnets mounted like rolling pins, which can naturally rotate to align poles and attach to any face of any other cube. The cubes' edges are also bevelled to allow them to pivot. Smaller magnets sit under their faces so they can "snap" into place when they land.

As with any army of modular robots, the researchers' ultimately hope that the M-Blocks' simplified locomotion system can be miniaturised for maximum malleability in what they can create - like the liquid metal scenario in the Terminator movies.

The full study will be presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems in November.

Remote control for virtualized desktops

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
5 critical considerations for enterprise cloud backup
Key considerations when evaluating cloud backup solutions to ensure adequate protection security and availability of enterprise data.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
How to simplify SSL certificate management
Simple steps to take control of SSL certificates across the enterprise, and recommendations centralizing certificate management throughout their lifecycle.