Feeds

Boffins create bulk-process on-silicon optics

Managing the on-chip power budget

Internet Security Threat Report 2014

A group of researchers from MIT and the University of Boulder at Colorado say they've moved photonics a step closer to integration with both microprocessors and memory.

On-chip photonics offer a number of attractive prospects for chip-makers. Photonic communications generate less heat than electrons moving through copper, and photons following adjacent paths don't generate crosstalk.

Reducing the on-chip heat load is an important objective, because each transistor crammed onto a chip is a heat source. As transistors get smaller, the amount of heat generated in the tiny space of a microprocessor rises, and since you can't (yet) get rid of the transistors, shifting communications to the optical domain leaves a little more elbow room.

However, to make the whole thing affordable on a mass scale, the optics has to be created using the same manufacturing processes as are used to create the silicon components.

That's where the development from the CU / MIT team. Led by CU-Boulder researcher Milos Popovic, the group has created optical modulators that can be manufactured using familiar processes: the silicon-on-insulator CMOS techniques used in some microprocessor fabs, and the bulk CMOS processes used both in microprocessor and memory fabs.

“On top of the energy-efficiency and bandwidth-density advantages of silicon-photonics over electrical wires, photonics integrated into CMOS processes with no process changes provides enormous cost-benefits and advantage over traditional photonic systems,” explained Vladimir Stojanovic of MIT in a statement.

The SIO-CMOS process was able to deliver a modulator that could operate at 5 Gbps (abstract here), with energy consumption of 40 femto-Joules per bit, while the bulk-CMOS process, also running at 5 Gbps, has energy consumption of 160 femto-Joules per bit (abstract here).

The ultimate aim of the DARPA-funded project, also supported by Micron Technology, is to create a complete photonic processor and memory system. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Chipmaker FTDI bricking counterfeit kit
USB-serial imitators whacked by driver update
Xperia Z3: Crikey, Sony – ANOTHER flagship phondleslab?
The Fourth Amendment... and it IS better
DOUBLE BONK: Testy fanbois catch Apple Pay picking pockets
Users wail as tapcash transactions are duplicated
Microsoft to enter the STRUGGLE of the HUMAN WRIST
It's not just a thumb war, it's total digit war
Google Glassholes are UNDATEABLE – HP exec
You need an emotional connection, says touchy-feely MD... We can do that
FTDI yanks chip-bricking driver from Windows Update, vows to fight on
Next driver to battle fake chips with 'non-invasive' methods
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.