Feeds

Google's robot army learns Spanish

La rebelión de las máquinas

5 things you didn’t know about cloud backup

If you want to learn another language, you need to spend time in the country, talk to people, get drunk and attempt to order complex drinks, and eventually read that country's great works of literature – unless you're Google, that is.

In a recent paper, three Googlers outlined a new approach to machine-based translation that uses the Chocolate Factory's weapons of choice: masses and masses of data, and neural networks.

The paper, "Exploiting Similarities among Languages for Machine Translation", shows how Google is able to use a small dictionary of pairs of words in two languages to train a network that can infer missing dictionary entries.

"Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and mapping between languages from small bilingual data," they write. "This method makes little assumption about the languages, so it can be used to extend and refine dictionaries and translation tables for any language pairs."

The system works by visualizing the vectors of individual words, then projecting the vector from the source language to the target language and swapping in the word with that vector representation in that dictionary.

Google_machine_translation

Feeling nervous yet, human?

It is able to work because, the researchers explain, "all common languages share concepts that are grounded in the real world (such as that cat is an animal smaller than a dog), there is often a strong similarity between the vector spaces."

Google's technology relies on the Skip-gram or Continuous Bag-of-Words (CBOW) models proposed by Googlers in another, earlier paper, which found that word vectors could be used to infer other words. "For example, vector operations 'king' - 'man' + 'woman' results in a vector that is close to 'queen'."

These models let Google create neural network models that learn high-quality word vectors from vast datasets, and do so in a less compute-intensive way than ever before. This lets the company scale up the model far beyond previous limits.

"Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram models even on corpora with one trillion words, for basically unlimited size of the vocabulary," they wrote at the time. "That is several orders of magnitude larger than the best previously published results for similar models."

Now, the team has been able to put these models to use to train them to figure out the relationship between different words, and infer the vector representations of a word's counter in another language.

"Thus, if we know the translation of one and four from English to Spanish, we can learn the transformation matrix that can help us to translate even the other numbers to Spanish," they write.

The technique works for languages far more alien from each other such as English and Czech, and English and Vietnamese with high degrees of accuracy.

"In particular, our work can be used to enrich and improve existing dictionaries and phrase tables, which would in turn lead to improvement of the current state-of-the-art machine translation systems," they write. "Clearly, there is still much to be explored."

In other words, get tweaking the CV, translators, because Google's algo-army is coming for you. Comprender? ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
Software bug caught Galileo sats in landslide, no escape from reality
Life had just begun, code error means Russia's gone and thrown it all away
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
prev story

Whitepapers

Gartner critical capabilities for enterprise endpoint backup
Learn why inSync received the highest overall rating from Druva and is the top choice for the mobile workforce.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.