Feeds

The 'third era' of app development will be fast, simple, and compact

Will Intel and Nvidia join the HSA party, or insist on going it alone?

The Power of One Brief: Top reasons to choose HP BladeSystem

Hot Chips At the annual Hot Chips symposium on high-performance chippery on Sunday, the assembled chipheads were led through a four-hour deep dive into the latest developments on marrying the power of CPUs, GPUs, DSPs, DMA engines, codecs, and other accelerators through the development of an open source programming model.

The tutorial was conducted by members of the HSA – heterogeneous system architecture – Foundation, a consortium of SoC vendors and IP designers, software companies, academics, and others including such heavyweights as ARM, AMD, and Samsung. The mission of the Foundation, founded last June, is "to make it dramatically easier to program heterogeneous parallel devices."

As the HSA Foundation explains on its website, "We are looking to bring about applications that blend scalar processing on the CPU, parallel processing on the GPU, and optimized processing of DSP via high bandwidth shared memory access with greater application performance at low power consumption."

Last Thursday, HSA Foundation president and AMD corporate fellow Phil Rogers provided reporters with a pre-briefing on the Hot Chips tutorial, and said the holy grail of transparent "write once, use everywhere" programming for shared-memory heterogeneous systems appears to be on the horizon.

According to Rogers, heterogeneous computing is nothing less than the third era of computing, the first two being the single-core era and the muti-core era. In each era of computing, he said, the first programming models were hard to use but were able to harness the full performance of the chips.

"In the case of single core," Rogers said, "we started with assembly code, then we went to much better abstractions: structured languages, objected-oriented languages, managed languages. At each stage you give up a little bit of performance for massive improvements in productivity, and the platform volumes grow extremely fast as programmers can use the platforms much more efficiently."

The same thing happened in the multi-core era, he said, moving from direct-thread programming to directive programming to task-parallel runtimes. In heterogeneous programming, however, that progression is just beginning. "We've gone from people writing shaders directly," he said, to proprietary languages such as CUDA, to open-standard languages such as OpenCL and C++ AMP.

"But ultimately," he said, "where the platform is going with HSA is to full programming languages like C++ and Java and many others."

Slide from HSA Foundation Hot Chips Pre-Briefing: History of Single-Core, Multi-Core, and Heterogeneous Era Computing

We're entering the third era of computing: the Heterogeneous Systems Era (click to enlarge)

Exactly how HSA will get there is not yet fully defined, but a number of high-level features are accepted. Unified memory addressing across all processor types, for example, is a key feature of HSA. "It's fundamental that we can allocate memory on one processor," Rogers said, "pass a pointer to another processor, and execute on that data – we move the compute rather than the data."

Full memory coherency, for another example, eliminates the need for software to manage caches. An architecture-queuing language, Rogers said, will allow an application or a library to dispatch packets to a GPU in what he called a "vendor-agnostic" manner. To enable preemption and context switching for a variety of applications and application types, HSA will support time-slicing throughout the entire collection of processor types.

Rogers took pains to emphasize that HSA is "defined from the outset" to be an open platform, with its specifications owned by the Foundation and delivered by means of a royalty-free standard. "It's designed from the ground up to be ISA-agnostic for both the CPU and the GPU – obviously that's very important," he said, a shared goal that's reflected in the range of hardware, operating system, tools, and middleware companies that have signed on as Foundation members.

Seven Steps to Software Security

More from The Register

next story
KDE releases ice-cream coloured Plasma 5 just in time for summer
Melty but refreshing - popular rival to Mint's Cinnamon's still a work in progress
NO MORE ALL CAPS and other pleasures of Visual Studio 14
Unpicking a packed preview that breaks down ASP.NET
Secure microkernel that uses maths to be 'bug free' goes open source
Hacker-repelling, drone-protecting code will soon be yours to tweak as you see fit
Cheer up, Nokia fans. It can start making mobes again in 18 months
The real winner of the Nokia sale is *drumroll* ... Nokia
Put down that Oracle database patch: It could cost $23,000 per CPU
On-by-default INMEMORY tech a boon for developers ... as long as they can afford it
Another day, another Firefox: Version 31 is upon us ALREADY
Web devs, Mozilla really wants you to like this one
Google shows off new Chrome OS look
Athena springs full-grown from Chromium project's head
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Securing Web Applications Made Simple and Scalable
Learn how automated security testing can provide a simple and scalable way to protect your web applications.