Feeds

Boffins use lasers to detect radio waves

Making light work of noise reduction

Remote control for virtualized desktops

The universe is a noisy place, if you're a radio signal: travelling through space, there's everything from the cosmic background radiation to the screaming noise of stars and galaxies; travelling through copper wires, there's the random noise that makes weak signals hard to detect.

Researchers from the University of Copenhagen, DTU Nanotech in Denmark, and NIST's Joint Quantum Institute plan to overcome the problem by not using antennas at all. Rather, they've developed and demonstrated a combination electromechanical and optical sensor that allows the signals to be captured on a laser beam.

Their work, published at Arxiv, notes that “coupling of radio frequency or microwave signals to optical fields via mechanics is particularly attractive.”

That's because much of the noise that swamps a weak signal comes not from the outside world, but from the electronics used to amplify whatever is received by the antenna – a problem encountered in radio astronomy, medical imaging, navigation and communications.

The aluminium membrane, tuned to a frequency, will vibrate when it
receives a suitable radio signal - and that phase-shifts the laser.
Source: Arxiv.

What the Danish and American researchers have demonstrated is a different approach. They coated a thin silicon nitride membrane with a layer of aluminium. The whole setup forms part of a simple LC – inductor and capacitor – resonant circuit: when struck by radio waves at its resonant frequency, the membrane vibrates.

With a laser shining on the aluminium layer, those vibrations are captured as phase shifts in the beam. A combination of a commercial Doppler vibrometer and a “homemade Michelson interferometer” to sense the laser. Once captured on optics, the radio signal can be digitised – with a far lower noise floor to worry about.

For detecting radio signals in the world of classical physics, the researchers claim an 80 dB dynamic range for broadband detection. The device the researchers demonstrated also had a sensitivity limit of 5 pV per root-Hertz or -210 dBm / Hz at its frequency band of 1 MHz.

Also impressive is that the device doesn't need the kind of cryogenic cooling that super-sensitive radio transducers use, but can operate at room temperature. ®

Intelligent flash storage arrays

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Rosetta science team thinks Philae might come to life in the spring
And disclose the biggest surprise of Comet 67P
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

Seattle children’s accelerates Citrix login times by 500% with cross-tier insight
Seattle Children’s is a leading research hospital with a large and growing Citrix XenDesktop deployment. See how they used ExtraHop to accelerate launch times.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.