Feeds

MIT boffins give computers control to clock faster TCP

Kit tuning its own networks: what could possibly go wrong with that?

Top 5 reasons to deploy VMware with Tegile

A group of MIT researchers has unveiled a machine learning approach to TCP congestion which could form the foundation of the next round of improvements to the venerable protocol's performance.

Dubbed “Remy”, their TCP control software is based on the idea that even sophisticated modern congestion control algorithms (like Compound TCP in Windows or Cubic in Linux) aren't flexible enough to cope with increasingly complex networks.

Instead, Professor Hari Balakrishnan, Fujitsu Professor of Electrical Engineering & Computer Science at MIT, believes it's better to set computers to the task of identifying what TCP settings work best under particular conditions.

Their work, pre-publication version here, appears to show that by replacing manually-generated congestion control with Remy, networks could achieve far better performance than any of the current TCP congestion control algorithms.

The idea is that a subnetwork that's got a high-capacity fibre on the other side of the router is going to have completely different congestion behaviours to one that's connected over a 3G wireless connection. For example, the naturally-higher latency of a wireless connection can look like congestion to an endpoint, because of its slow ACK times.

The fundamental problem the MIT group is trying to solve: TCP has a limited network model. “For example,” they write, “because TCP assumes that packet losses are due to congestion and reduces its transmission rate in response, some subnetwork designers have worked hard to hide losses. This often simply adds intolerably long packet delays.”

“We believe that the best way to approach this question is to take the design of specific algorithmic mechanisms out of the hands of human designers (no matter how sophisticated!), and make the end-to-end algorithm be a function of the desired overall behaviour,” they continue.

Describing TCP behaviour in terms of game theory, the MIT researchers write that the best thing any endpoint can do with a packet, at any given moment, is to send it – and if every endpoint simply hands its packet to the network, the network collapses into congestion.

Remy is designed to work on a subnetwork basis – that is, all endpoints in a subnet are running Remy. Hence, for example, on a home network, Remy's aim would be to limit local congestion by having the hosts respond in the same way to that congestion.

To do this, Remy expresses the sender's state as a function of the arrival time of acknowledgements from the far end (using an exponentially weighted moving average, EWMA); the timestamps on those acks (also weighted as EWMA); and the ratio between the most recent packet RTT and the minimum RTT seen in a session.

The system then builds a table of rules for its subnetwork, iteratively adjusting congestion behaviours until a best-case is reached under given conditions.

They've released the code for Remi at github. ®

Internet Security Threat Report 2014

More from The Register

next story
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
DEATH by COMMENTS: WordPress XSS vuln is BIGGEST for YEARS
Trio of XSS turns attackers into admins
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The hidden costs of self-signed SSL certificates
Exploring the true TCO for self-signed SSL certificates, including a side-by-side comparison of a self-signed architecture versus working with a third-party SSL vendor.