Feeds

Boffins chill out with new temperature measurement

Forget water temperature, all the hip scientists are measuring the Boltzmann constant

Securing Web Applications Made Simple and Scalable

Why would you get excited about a new measurement of the Boltzmann constant that took six years to achieve?

In the case of the UK scientists who made the measurement at the UK's National Physical Laboratory (NPL), it's because the long-held standard for temperature measurement is problematic at extremes.

The kelvin and the degree Celsius are currently both defined using what's known as the triple point of water – “the point at which liquid water, solid ice and water vapour can all exist in equilibrium”, the NPL says in a statement.

The triple point is a definition rather than a measurement: the three states of water can be calculated to exist at 0.01°C and a partial vapour pressure of 611.73 pascals – in kelvin, 273.16K. All other measurements of temperature are made relative to this value.

However, as Dr Michael de Podesta of the NPL explains, “The further away one measures from the temperature of the triple point of water, the harder it gets to precisely determine the ratio of exactly how much hotter or colder the temperature is than the standard temperature. This adds uncertainty to temperature measurements on top of the normal practical difficulties.”

The paper he and his collaborators (from Cranfield University and the Scottish Universities Environmental Research Centre, SUERC) have prepared for the journal Metrologia focuses on the Boltzmann constant: the relationship between a particle's temperature and its energy. The paper sets the constant as 1.38065156 (98) x 10-23 J K-1 with (98) expressing the uncertainty of the last two digits in the value.

It's those last two digits that matter: the uncertainty, which amounts to 0.7 parts per million, is around half of that in previous measurements.

The measurement was made using acoustic thermometry: an acoustic resonator was chilled to the triple point of water, and filled with a high purity argon gas. High-accuracy measurements of the speed of sound in the gas provides a measurement of the average speed of the argon molecules, from which their kinetic energy – and therefore the Boltzmann constant – could be calculated.

The resonating chamber also needed to be measured to high accuracy, using microwaves that provided an overall uncertainty of just 600 atoms' worth, or 11.7 nanometres.

Since the same constant is useful in calculating the thermal voltage of semiconductors, The Register supposes the measurement might prove useful beyond the world of basic science. ®

HP ProLiant Gen8: Integrated lifecycle automation

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Mobile application security vulnerability report
The alarming realities regarding the sheer number of applications vulnerable to attack, and the most common and easily addressable vulnerability errors.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.