Feeds

Ashes latest: Don't show Ozzies THIS perfect spin bowl science ... too late

Stumped by weird English sport? Ball boffins pitch a top toss

5 things you didn’t know about cloud backup

Nobody knows how the “ball of the century” crept around Mike Gatting's bat and leg in 1993 except the king-of-spin Shane Warne – until now.

Ahead of today's opening of the England versus Australia Ashes Test, a brace of Oz physicists have crunched the numbers for a spinning ball, stuck them into elite maths package Matlab - and had their work published by science journal Physica Scripta.

Knowing a hit-magnet when it sees it, the IOPScience publication is letting mere mortals like myself read the entire paper without charge. [And with England 98 for 3 after the break for lunch, perhaps the Australians have had a look too - sub-ed]

Brothers doctors Ian and Garry Robinson (Ian is at the University of Melbourne and is researching education systems, which is relevant to this research; Garry is a physicist at UNSW's Australian Defence Force Academy and usually concentrates on astronomical research) have turned their minds to developing the differential equations governing a spinning ball, or as they put it:

The differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary 'wind'.

They argue that only gravity, directional drag (that is, acting opposite to a ball's motion) and a lift caused by Magnus force (the quick version in Wikipedia is here) are all you need to know about a spin bowler's delivery. With values for these in hand – sorry – it's possible to work out what the ball is going to do in the presence or absence of wind, at least until it hits the ground.

“In the case of a cricket ball the subtle behaviour of so-called 'drift', particularly 'late drift', and also 'dip', which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice,” they write in the abstract of the paper.

For example, they predict that a 14km/h cross-wind would interact with the spinning ball enough to move its landing spot 14 centimetres (relative to its no-wind, no-spin trajectory), which is probably enough to make a batsman look like a tangle-foot.

Especially since, as the research finds, the interaction between spin, drag and wind accummulates during the ball's flight, leading to the phenomena of “late drift” or “late dip” that a good spinner knows and loves.

Simplified diagram of spinning ball

Here's your wrong'un, Warnie: a simplified diagram of the Drs Robinson's spin model

Source: Physica Scriptia

“While a ball initially with top-spin, for example, will always possess only top-spin, provided it retains its spin, the situation can be more complicated for other spin directions. For example, a ball projected horizontally with the spin axis in the same direction as the initial velocity vector will, by symmetry, initially have no lift force, but as the velocity develops a downward component under gravity, a side-ways lift force will be generated,” they write.

Dr Ian Robertson told The Guardian: “Probably the most interesting aspect of the work was the fact that, for example, an off-spinning delivery exhibits a 'lift' in the presence of a cross-wind coming from the off-side and exhibits a 'dip' in the presence of a cross-wind coming from the leg-side.”

Apart from the intrinsic scientific interest, the Robinsons believe the paper could help engage the interest of students who might be enrolled in maths or physics, but seem to show more interest in sport.

They note that the problem of spin is also applicable to baseball, golf, and tennis, to name a few sports. The IOPScience article includes some of the Matlab models, so that budding doctors of spin can test some of the maths for themselves. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
Software bug caught Galileo sats in landslide, no escape from reality
Life had just begun, code error means Russia's gone and thrown it all away
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Gartner critical capabilities for enterprise endpoint backup
Learn why inSync received the highest overall rating from Druva and is the top choice for the mobile workforce.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.