Feeds

Cosmic blast mystery solved in neutron star's intense death throes

'As if millions of voices suddenly cried out in terror and were suddenly silenced'

  • alert
  • submit to reddit

Protecting against web application threats using SSL

A pair of European astrophysicists believe they've solved the mystery of exceedingly bright, never-repeated flashes of radio waves that come to us from the distant past.

The source of those brief, intense flashes can be defined in two ways, depending upon whether you'd prefer to look at the event as a death or a birth.

"We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses to a black hole due to magnetic braking," write Heino Falcke of Radboud University in Nijmegen, the Netherlands, and Luciano Rezzolla of the Albert Einstein Institute in Potsdam, Germany in their paper (preprint, PDF) "Fast radio bursts: the last sign of supramassive neutron stars" published in this week's edition of Science.

Neutron stars are ludicrously dense objects. According to the press release outlining Falcke and Rezzolla's findings, "They are the size of a small city but have up to two times the mass of our Sun."

As you might assume, something that massive has an upper limit on its mass, otherwise it would collapse in upon itself and become a black hole – and you'd be right. There are, however, neutron stars that are larger than the critical mass of about two solar masses, but that manage to keep from falling in on themselves due to their high rotational velocity.

A supramassive neutron star on its way to becoming a 'blitzar'

Cleaning up the neighborhood in preparation from metamorphosis from neutron star to black hole

If an overweight neutron star is spinning fast enough, the centrifugal forces that are generated by that speedy rotation can counterbalance the forces of gravity, and keep the star from falling in on itself for millions of years – but not forever.

The reason for their inevitable doom is that neutron stars also have extremely powerful magnetic fields that radiate outward from them. "Over time," Falcke and Rezzolla write, "magnetic braking would clear out the immediate environment of the star and slow it down." And when it slows down sufficiently, the centrifugal forces diminish to an extent that gravity will achieve its inevitable victory.

Normally when a star collapses into a black hole, there is also a burst of optical and gamma-ray radiation. Not so in this scenario, seeing as that the rotating neutron star's magnetic field has already cleaned out the neighborhood, and that the event horizon of the black hole quickly engulfs the surface of the neutron star.

"All the neutron star has left is its magnetic field, but black holes cannot sustain magnetic fields, so the collapsing star has to get rid of them," explains Falcke. "When the black hole forms, the magnetic fields will be cut off from the star and snap like rubber bands," and that snap is what produces the immense, one-time radio flash that has been observed.

"All other signals you normally would expect – gamma rays, x-rays – simply disappear behind the event horizon of the black hole," says Flacke.

Falcke and Rezzolla have dubbed these objects blitzars – "blitz" being German for "flash" or "lightning". "A blitzar," Rezzola writes, "is at the same time the farewell signal of a dying neutron star and the first message from a newly born black hole." ®

Reducing the cost and complexity of web vulnerability management

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.