Feeds

Battery-boosting breakthrough grows on trees – literally

As the hoary baseball cliché puts it, 'Grab some pine, meat!'

Bridging the IT gap between rising business demands and ageing tools

Battery technology has stubbornly resisted major breakthoughs, but a team of researchers at the University of Maryland has found help from a most unlikely source: pine trees.

In a paper published in the American Chemical Society's Nano News, the team describes an experiment they conducted which solves a number of the challenges that have prevented battery designers from substituting cheap, abundant sodium for more expensive, rarer lithium.

Lithium, as anyone who has been following battery technology for the past decade or so, is the basis for the lithium-ion, lithium-polymer, lithium-sulphide, and lithium ion phosphate batteries that power everything from smartphones to electric racing cars.

Sodium and lithium are both quite capable of becoming positively charged ions by dumping an electron, which makes them both prime candidates for battery usage, since a battery works by moving ions between an anode and a cathode.

One problem, however: a sodium atom is a big ol' sucker, having an atomic weight of 22.99 compared to lithium's svelte 6.94. When a sodium ion slams into those electrodes it can do some serious damage – well, serious when compared with a lithium ion.

This damage shortens the number of times a sodium-ion battery can be recharged, making it less economical – which is too bad, seeing as how there's so much cheap, easily available sodium in nature.

To the rescue come the researchers and their paper, "Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir". Their brainstorm was to take cellulose fibers from a yellow pine tree, coat them first in carbon nanotubes to improve conductivity and then a tin film – tin being the anode material of choice for both lithium and sodium ion batteries.

Not only did the yellow-pine cellulose fiber absorb much of the shock caused by the heavy sodium ions slamming into the tin, it also served as a fine receptacle for the necessary electrolytes. Or, as the researchers put it in fine scientific prose:

The soft nature of wood fibers effectively releases the mechanical stresses associated with the sodiation process, and the mesoporous structure functions as an electrolyte reservoir that allows for ion transport through the outer and inner surface of the fiber.

The team's woodworking skills resulted in a battery that performed reasonably well for a first-try prototype, dropping from its initial capacity of 339 milliamp hours per gram to 145 mAH/g after 400 rechargings. A little tuning, and it's well-nigh inevitable that its performance will increase.

But don't think that you'll soon be slipping slivers of pine into your smartphone or laptop. As the teams writes in the abstract to their paper, the goal of their research is to produce "low cost grid scale storage" – meaning batteries that can, for example, feed a power grid at night after photovoltaics have charged them during the day, or do the same when their electricity-producing wind generator is becalmed.

And don't worry about deforestation – a single yellow pine can provide enough cellulosic material for plenty of sodium-ion batteries. ®

Mobile application security vulnerability report

More from The Register

next story
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.